Dimension reduction

Mathurin Massias & Titouan Vayer email: firstname.lastname@inria.fr

Table of contents

Why dimension reduction?

Principal component analysis

The principle of PCA Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods (T)SNE

Autoencoders

- Visualize high-dimensional data (in 2D or 3D).
- Interpret the data: find meaningful compact representations.
- Compress the data: advantages for storage and robustness.
- Reveal the "structure of the data".
- Avoid the curse of dimensionality.

Curse of dimensionality

- Number of points needed to cover the hypercube cube $[0,1]^d$ with precision $r: \left(\frac{2}{r}\right)^d$
- Distances between points become meaningless. Pairwise distances between 50 points on the unit sphere of R^d:

Unsupervised dataset

Unsupervised learning

- The dataset contains the samples (x_i)ⁿ_{i=1} where n is the number of samples of size d.
- d and n define the dimensionality of the learning problem.
- ▶ Data stored as a matrix X ∈ ℝ^{n×d} that contains the training samples as rows.

Unsupervised dataset

Unsupervised learning

- The dataset contains the samples (x_i)ⁿ_{i=1} where n is the number of samples of size d.
- d and n define the dimensionality of the learning problem.
- ▶ Data stored as a matrix X ∈ ℝ^{n×d} that contains the training samples as rows.

In ML vectors are sometimes described in row instead of column

The big picture

Original dataset

Objective

$$(\mathbf{x}_i)_{i=1}^n \quad \Rightarrow \quad \left(\mathbf{\tilde{x}}_i \in \mathbb{R}^k \right)_{i=1}^n \text{ with } k \ll d$$

Project the data into a low dimensional space \mathbb{R}^k with $k \ll d$

Preserve the information in the data (class, subspace, similarities)

The big picture

Original dataset

Objective

$$(\mathbf{x}_i)_{i=1}^n \quad \Rightarrow \quad \left(\mathbf{ ilde{x}}_i \in \mathbb{R}^k
ight)_{i=1}^n ext{ with } k \ll d$$

- Project the data into a low dimensional space \mathbb{R}^k with $k \ll d$
- Preserve the information in the data (class, subspace, similarities)

Modeling choices

- Linear, non linear projection?
- Similarity between samples.

The big picture

Original dataset

Objective

$$(\mathbf{x}_i)_{i=1}^n \quad \Rightarrow \quad \left(\mathbf{ ilde{x}}_i \in \mathbb{R}^k
ight)_{i=1}^n ext{ with } k \ll d$$

- \blacktriangleright Project the data into a low dimensional space \mathbb{R}^k with $k \ll d$
- Preserve the information in the data (class, subspace, similarities)

Modeling choices

- Linear, non linear projection?
- Similarity between samples.

Methods

- PCA, random projections.
- Non-linear methods (MDS, tSNE, Auto-Encoder)

Dimension reduction vs subsampling

Table of contents

Why dimension reduction?

Principal component analysis The principle of PCA

Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods (T)SNE

The principle

Setting

• A dataset $\mathbf{X} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)^\top \in \mathbb{R}^{n \times d}$ with d big.

• Suppose for simplicity $\sum_{i=1}^{n} \mathbf{x}_i = 0$ (centered data), *i.e.* $\mathbf{X}^{\top} \mathbf{1}_n = 0$.

The principle

Setting

• A dataset $\mathbf{X} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)^\top \in \mathbb{R}^{n \times d}$ with d big.

• Suppose for simplicity $\sum_{i=1}^{n} \mathbf{x}_i = 0$ (centered data), *i.e.* $\mathbf{X}^{\top} \mathbf{1}_n = 0$.

Goal

- Find coordinates $\tilde{\mathbf{x}}_i = f(\mathbf{x}_i)$ in \mathbb{R}^k with $k \ll d$.
- ▶ The new data $(\tilde{\mathbf{x}}_i)_{i \in [n]}$ should "look like" **X** (to be defined).

Linear mapping according to a reconstruction principle

Find $\mathbf{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_k) \in \mathbb{R}^{d \times k}$ with $\mathbf{u}_n^\top \mathbf{u}_m = \delta_{nm}$ (orthonormal vectors)

► Dimension reduction via linear mapping: $\tilde{\mathbf{x}}_i = \mathbf{U}^\top \mathbf{x}_i \in \mathbb{R}^k$

Linear mapping according to a reconstruction principle

- Find $\mathbf{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_k) \in \mathbb{R}^{d \times k}$ with $\mathbf{u}_n^\top \mathbf{u}_m = \delta_{nm}$ (orthonormal vectors)
- ▶ Dimension reduction via linear mapping: $\tilde{\mathbf{x}}_i = \mathbf{U}^\top \mathbf{x}_i \in \mathbb{R}^k$
- ▶ What make a **U** "better" than another?

The principle of PCA

Linear mapping according to a reconstruction principle

- Find $\mathbf{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_k) \in \mathbb{R}^{d \times k}$ with $\mathbf{u}_n^\top \mathbf{u}_m = \delta_{nm}$ (orthonormal vectors)
- Dimension reduction via linear mapping: $\tilde{\mathbf{x}}_i = \mathbf{U}^{\top} \mathbf{x}_i \in \mathbb{R}^k$
- Reconstruction principle (Pearson 1901):

$$\min_{\substack{\mathbf{U}\in\mathbb{R}^{d\times k}\\\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}}\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}-\mathbf{U}\tilde{\mathbf{x}}_{i}\|_{2}^{2}=\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}-\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_{i}\|_{2}^{2}$$

▶ $\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_{i}$ is the linear projection of \mathbf{x}_{i} onto span $(\mathbf{u}_{1}, \cdots, \mathbf{u}_{k})$

The principle of PCA

Linear mapping according to a reconstruction principle

- Find $\mathbf{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_k) \in \mathbb{R}^{d \times k}$ with $\mathbf{u}_n^\top \mathbf{u}_m = \delta_{nm}$ (orthonormal vectors)
- ► Dimension reduction via linear mapping: $\mathbf{\tilde{x}}_i = \mathbf{U}^{\top} \mathbf{x}_i \in \mathbb{R}^k$
- Reconstruction principle (Pearson 1901):

$$\min_{\substack{\mathbf{U}\in\mathbb{R}^{d\times k}\\\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}}\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}-\mathbf{U}\tilde{\mathbf{x}}_{i}\|_{2}^{2}=\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}-\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_{i}\|_{2}^{2}$$

• After finding a sol. \mathbf{U}^{\star} , $\mathbf{x}_i \approx \sum_{j=1}^k \langle \mathbf{x}_i, \mathbf{u}_j^{\star} \rangle \mathbf{u}_j^{\star}$ (equality when k = d).

Illustration

Equivalent problem

▶ The PCA problem is equivalent to the *non-convex* quadratic problem:

$$\max_{\substack{\mathbf{U}\in\mathbb{R}^{d\times k}\\\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}}\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{U}^{\top}\mathbf{x}_{i}\|_{2}^{2}=\operatorname{tr}\left(\mathbf{U}^{\top}\left(\overbrace{1}{n}\mathbf{X}^{\top}\mathbf{X}\right)\mathbf{U}\right)$$

Equivalent problem

▶ The PCA problem is equivalent to the *non-convex* quadratic problem:

$$\max_{\substack{\mathbf{U}\in\mathbb{R}^{d\times k}\\\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}}\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{U}^{\top}\mathbf{x}_{i}\|_{2}^{2}=\operatorname{tr}\left(\mathbf{U}^{\top}\left(\overline{\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}}\right)\mathbf{U}\right)$$

Equivalent to maximizing the variance of the projected samples x
_i.

• Empirical covariance matrix $\widehat{\mathbf{\Sigma}} = rac{1}{n} \mathbf{X}^{ op} \mathbf{X} \in \mathbb{R}^{d imes d}$

recap: Two views on PCA

The PCA is the linear mapping $\mathbf{x} \mapsto \mathbf{\tilde{x}} = \mathbf{U}\mathbf{x} \in \mathbb{R}^k$ that (equivalently):

minimizes the reconstruction error

$$\min \mathbf{U} \in \mathbb{R}^{d \times k}_{\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_{k}} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{U} \mathbf{U}^{\top} \mathbf{x}_{i}\|^{2}$$

maximizes the variance of the projected data

$$\max_{\substack{\mathbf{U}\in\mathbb{R}^{d\times k}\\\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}}\sum_{i=1}^{n}\|\mathbf{U}\mathbf{x}_{i}\|^{2}$$

Now how do we compute this optimal \mathbf{U} ?

Computing PCA: the Ky-Fan theorem

Fan 1949 Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ symmetric with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_d$ and $k \le d$. Then, $\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^\top \mathbf{U} = \mathbf{I}_k$ tr $(\mathbf{U}^\top \mathbf{A} \mathbf{U}) = \sum_{i=1}^k \lambda_i$. (1) A solution of (1) is given by $\mathbf{U}^* = (\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k})$ where $\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k}$ are eigenvectors of \mathbf{A} respectively associated to the top-k eigenvalues.

Computing PCA: the Ky-Fan theorem

Fan 1949

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ symmetric with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_d$ and $k \leq d$. Then,

$$\max_{\mathbf{U}\in\mathbb{R}^{d\times k},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}\operatorname{tr}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})=\sum_{i=1}^{k}\lambda_{i}.$$
 (1)

A solution of (1) is given by $\mathbf{U}^* = (\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k})$ where $\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k}$ are eigenvectors of \mathbf{A} respectively associated to the top-k eigenvalues.

Consequences for PCA

- ► Solution of PCA: find the *k* largest eigenvalues of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{d \times d}$.
- Solution $\mathbf{U}^{\star} = (\mathbf{u}_{1}^{\star}, \dots, \mathbf{u}_{k}^{\star})$ associated to the top-k eigenvalues of $\widehat{\mathbf{\Sigma}}$.
- $\mathbf{u}_1^{\star} \in \mathbb{R}^d, \dots, \mathbf{u}_k^{\star} \in \mathbb{R}^d$ are called *principal components*.
- ► ⚠️ the decomposition is not unique ! (eigenvectors sign flip)

Computing PCA: the Ky-Fan theorem

Fan 1949

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ symmetric with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_d$ and $k \leq d$. Then,

$$\max_{\mathbf{U}\in\mathbb{R}^{d\times k},\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{k}}\operatorname{tr}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})=\sum_{i=1}^{k}\lambda_{i}.$$
 (1)

A solution of (1) is given by $\mathbf{U}^* = (\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k})$ where $\mathbf{u}_{\mathbf{A}_1}, \dots, \mathbf{u}_{\mathbf{A}_k}$ are eigenvectors of \mathbf{A} respectively associated to the top-k eigenvalues.

Consequences for PCA

- ► Solution of PCA: find the *k* largest eigenvalues of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{d \times d}$.
- Solution $\mathbf{U}^{\star} = (\mathbf{u}_{1}^{\star}, \dots, \mathbf{u}_{k}^{\star})$ associated to the top-k eigenvalues of $\widehat{\mathbf{\Sigma}}$.
- $\mathbf{u}_1^{\star} \in \mathbb{R}^d, \dots, \mathbf{u}_k^{\star} \in \mathbb{R}^d$ are called *principal components*.
- ► ⚠️ the decomposition is not unique ! (eigenvectors sign flip)

Example with 3D data

Simple 3D data.

▶ Projection onto the two firsts principal components $(d = 3 \rightarrow k = 2)$. PCA

Faces from dataset

Setting

▶ Each image is a vector $\mathbf{x}_i \in \mathbb{R}^{4096}$ (*d* = 4096 pixels), *n* = 400 images.

Faces from dataset

Setting

▶ Each image is a vector $\mathbf{x}_i \in \mathbb{R}^{4096}$ (*d* = 4096 pixels), *n* = 400 images.

- Find k "eigenfaces": principal components $\mathbf{u}_1^{\star}, \dots, \mathbf{u}_k^{\star} \in \mathbb{R}^d$.
- ► Idea: explain images via $\mathbf{x}_i \approx \sum_{j=1}^k \langle \mathbf{x}_i, \mathbf{u}_j^* \rangle \mathbf{u}_j^*$, in other words image $\approx \alpha_1 \times$ eigenface $1 + \cdots + \alpha_k \times$ eigenface k

• How to choose k? ratio explained variance: $r = \sum_{i=1}^{k} \lambda_i / \sum_{i=1}^{d} \lambda_i$

Explanation:

The "naive" way

- Find the eigenvalue decomposition of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$
- Compute $\widehat{\Sigma}$: $\mathcal{O}(nd^2)$ operations.
- Eigenvalue decomposition : $\mathcal{O}(d^3)$ operations.
- ▶ Keep only the *k*-largest eigenvalues associated to *k* eigenvectors.
- Space complexity: $\mathcal{O}(d^2)$
- Time complexity: $O(nd^2 + d^3)$

The "naive" way

- Find the eigenvalue decomposition of $\widehat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$
- Compute $\widehat{\Sigma}$: $\mathcal{O}(nd^2)$ operations.
- Eigenvalue decomposition : $\mathcal{O}(d^3)$ operations.
- ▶ Keep only the *k*-largest eigenvalues associated to *k* eigenvectors.
- Space complexity: $\mathcal{O}(d^2)$
- Time complexity: $O(nd^2 + d^3)$

The right way

Compute the singular value decomposition (SVD) of X!

Table of contents

Why dimension reduction?

Principal component analysis The principle of PCA

Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods (T)SNE Autoencoders

One of the most useful tools in linear algebra

Singular value decomposition

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. Then \mathbf{X} can be decomposed as

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$
(2)

where $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{V} \in \mathbb{R}^{d \times d}$ are unitary $(\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}_n, \mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_d)$ and $\mathbf{\Sigma} \in \mathbb{R}^{n \times d}$ is a rectangular diagonal matrix with nonnegative real numbers $(\sigma_i)_{i \in [\min\{n,d\}]}$ on the diagonal, called singular values.

One of the most useful tools in linear algebra

Singular value decomposition

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. Then \mathbf{X} can be decomposed as

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$
(2)

where $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{V} \in \mathbb{R}^{d \times d}$ are unitary $(\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}_n, \mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_d$) and $\mathbf{\Sigma} \in \mathbb{R}^{n \times d}$ is a rectangular diagonal matrix with nonnegative real numbers $(\sigma_i)_{i \in [\min\{n,d\}]}$ on the diagonal, called singular values.

Properties

- rank(\mathbf{X}) = number of non-zero $\sigma'_i s$.
- The *columns* of **V** are eigenvectors of $\mathbf{X}^{\top}\mathbf{X} \in \mathbb{R}^{d \times d}$.
- ▶ The *columns* of **U** are eigenvectors of $XX^{\top} \in \mathbb{R}^{n \times n}$.
- We have $\sigma_i = \sqrt{\text{eigenvalue}_i(\mathbf{X}^{\top}\mathbf{X})} = \sqrt{\text{eigenvalue}_i(\mathbf{X}\mathbf{X}^{\top})}$.
- We have the relations $\mathbf{X}\mathbf{v}_i = \sigma_i \mathbf{u}_i, \mathbf{X}^{\top} \mathbf{u}_i = \sigma_i \mathbf{v}_i$.

SVD: many flavors

Full SVD (image in case $n \ge d$)

- Generalizes eigenvalue decomposition for non-symmetric matrices.
- ▶ Complexity: O(nd min{n, d}) (Golub-Reinsch algorithm see Cline and Dhillon 2006).
- ► To find the eigenvalues of X^TX or XX^T we do not even have to compute these matrices!

SVD: many flavors

Thin SVD

▶ If we write $\mathbf{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_n), \mathbf{V} = (\mathbf{v}_1, \cdots, \mathbf{v}_d)$ the full SVD, then Thin SVD gives:

$$\mathbf{X} = \sum_{i=1}^{\min\{n,d\}} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$$
SVD: many flavors

Compact SVD

- Keep only the non-zero singular values. In particular $r = rank(\mathbf{X})$.
- The pseudo-inverse of **X** is given by $\mathbf{X}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\top}$.

SVD: many flavors

Truncated SVD

- Best rank-k approximation of **X** (in the sense of $\|\cdot\|_F$, $\|\cdot\|_{2\to 2}$).
- The solution of the PCA is given by $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- ► The embedding $(\tilde{\mathbf{x}}_i)_{i \in [n]}$ in low dim of PCA is given by $\mathbf{U} \mathbf{\Sigma} \in \mathbb{R}^{n \times k}$.
- Efficient algorithms O(ndk) (Halko, Martinsson, and Tropp 2011).

- Dimension reduction $\mathbb{R}^d \to \mathbb{R}^k$ via a linear mapping.
- Defined with a matrix U with orthonormal columns.
- Follows a reconstruction principle.
- Maximizes the variance of the projected samples.
- Used for compression, interpretation, robustness.
- Can be computed with SVD in O(ndk) time with truncated SVD (randomness).
- In practice it is common to normalize your data before doing PCA.

A word on Kernel PCA

From PCA...

► PCA solves
$$\max_{\substack{\mathbf{U} \in \mathbb{R}^{d \times k} \\ \mathbf{U}^\top \mathbf{U} = \mathbf{I}_k}} \operatorname{tr} (\mathbf{U}^\top (\mathbf{X}^\top \mathbf{X}) \mathbf{U}).$$

• Eigenvalue decomposition of $\mathbf{X}^{\top}\mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{d \times d}$.

► Same non-zero eigenvalues as $XX^{\top} = (\langle x_i, x_j \rangle)_{ij} \in \mathbb{R}^{n \times n}$ (exercise).

A word on Kernel PCA

From PCA...

► PCA solves
$$\max_{\substack{\mathbf{U} \in \mathbb{R}^{d \times k} \\ \mathbf{U}^\top \mathbf{U} = \mathbf{I}_k}} \operatorname{tr} (\mathbf{U}^\top (\mathbf{X}^\top \mathbf{X}) \mathbf{U}).$$

- Eigenvalue decomposition of $\mathbf{X}^{\top}\mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{d \times d}$.
- ► Same non-zero eigenvalues as $XX^{\top} = (\langle x_i, x_j \rangle)_{ij} \in \mathbb{R}^{n \times n}$ (exercise).

... to Kernel PCA (Schölkopf, Smola, and Müller 2005)

- ▶ PCA in a high-dimensional non-linear embedding $\Phi(\mathbf{x})$ of the data.
- *Kernel trick*: embedding is *implicit* we only need $\mathbf{K} = (\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle)_{ij}$.
- Kernel PCA: eigenvalue decomposition of $\mathbf{K} \in \mathbb{R}^{n \times n}$.
- More powerful but expensive for large *n*.

A word on Kernel PCA

From PCA...

► PCA solves
$$\max_{\substack{\mathbf{U} \in \mathbb{R}^{d \times k} \\ \mathbf{U}^\top \mathbf{U} = \mathbf{I}_k}} \operatorname{tr} (\mathbf{U}^\top (\mathbf{X}^\top \mathbf{X}) \mathbf{U}).$$

- Eigenvalue decomposition of $\mathbf{X}^{\top}\mathbf{X} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{d \times d}$.
- ► Same non-zero eigenvalues as $XX^{\top} = (\langle x_i, x_j \rangle)_{ij} \in \mathbb{R}^{n \times n}$ (exercise).

... to Kernel PCA (Schölkopf, Smola, and Müller 2005)

- ▶ PCA in a high-dimensional non-linear embedding $\Phi(\mathbf{x})$ of the data.
- *Kernel trick*: embedding is *implicit* we only need $\mathbf{K} = (\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle)_{ii}$.
- Kernel PCA: eigenvalue decomposition of $\mathbf{K} \in \mathbb{R}^{n \times n}$.
- More powerful but expensive for large *n*.

From PCA...

• One principle of PCA is to represent a sample as a linear combination $\mathbf{x} \approx \sum_{j=1}^{k} \alpha_j \mathbf{d}_j$ with $\mathbf{d}_j \in \mathbb{R}^d$.

▶ PCA:
$$\alpha_j = \langle \mathbf{x}, \mathbf{u}_j^* \rangle, \mathbf{d}_j = \mathbf{u}_j^*$$
 principal component.

From PCA...

- One principle of PCA is to represent a sample as a linear combination $\mathbf{x} \approx \sum_{j=1}^{k} \alpha_j \mathbf{d}_j$ with $\mathbf{d}_j \in \mathbb{R}^d$.
- ► PCA: $\alpha_j = \langle \mathbf{x}, \mathbf{u}_j^* \rangle, \mathbf{d}_j = \mathbf{u}_j^*$ principal component.

... to dictionary learning (DL)

- Represent x in another "basis": $\mathbf{x} \approx \mathbf{D} \boldsymbol{\alpha}$ (e.g. Fourier/Wavelet basis).
- ▶ $\mathbf{D} \in \mathbb{R}^{d \times k}$ is the *dictionary*. *k* might be bigger than *d* (overcomplete)
- $\alpha \in \mathbb{R}^k$ is the representation of **x** in the dictionary **D**.

Find the representation

Given a point x and a dictionary D:

$$\widehat{\boldsymbol{\alpha}} = \underset{\boldsymbol{\alpha} \in C}{\arg\min} \|\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}\|_2^2$$
(3)

• When $C = \mathbb{R}^k$, $\mathbf{D}^\top \mathbf{D} = \mathbf{I}_k$ then $\widehat{\alpha} = \mathbf{D}^\top \mathbf{x}$.

• Can also be used with different losses than $\|\cdot\|_2^2$.

Find the representation

Given a point x and a dictionary D:

$$\widehat{\boldsymbol{\alpha}} = \underset{\boldsymbol{\alpha} \in C}{\arg\min} \| \mathbf{x} - \mathbf{D}\boldsymbol{\alpha} \|_2^2$$
(3)

• When
$$C = \mathbb{R}^k$$
, $\mathbf{D}^\top \mathbf{D} = \mathbf{I}_k$ then $\widehat{\alpha} = \mathbf{D}^\top \mathbf{x}$.

► Can also be used with different losses than || · ||²₂.

Learn the representation and the dictionary

• Given a dataset $\mathbf{x}_1, \cdots, \mathbf{x}_n$, learn the dictionary and the representations

$$\widehat{\mathbf{D}}, \widehat{\alpha_1}, \cdots, \widehat{\alpha_n} = \underset{\substack{\mathbf{D} \in \mathcal{D} \\ \alpha_1, \cdots, \alpha_n \in C}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{D}\alpha_i\|_2^2.$$
(4)

▶ When $C = \mathbb{R}^k$, $\mathcal{D} = \{ \mathbf{D} \in \mathbb{R}^{d \times k}, \mathbf{D}^\top \mathbf{D} = \mathbf{I}_k \}$ we retrieve the PCA.

- But various possibilities (Mairal et al. 2009)!
- Scikit-learn implementation : sklearn.decomposition.DictionaryLearning

One example

Sparse dictionary learning

• Given a dataset $\mathbf{x}_1, \cdots, \mathbf{x}_n$, learn the dictionary and the representations

$$\widehat{\mathbf{D}}, \widehat{\alpha_1}, \cdots, \widehat{\alpha_n} = \underset{\substack{\mathbf{D} \in \mathcal{D} \\ \alpha_1, \cdots, \alpha_n \in C}}{\operatorname{arg\,min}} \quad \frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{D}\alpha_i\|_2^2.$$
(5)

► Take $\mathcal{D} = \{ \mathbf{D} \in \mathbb{R}^{d \times k} : \forall i, \|\mathbf{d}_i\|_2 = 1 \}$ (normalized columns).

• Take $C = \{ \alpha : \|\alpha\|_1 \le \lambda \}$ sparsity promoting regularization.

Example d = 2, k = 3 (not dimension reduction!!)

Table of contents

Why dimension reduction?

Principal component analysis The principle of PCA

Singular value decomposition

Minimum distortion embedding General setting

Random projections

Some nonlinear methods

(T)SNE Autoencoders

General setting

Preserve the pairwise distances (Agrawal, Ali, and Boyd 2021)

 $\forall (i,j), \text{ dissimilarity}_{\mathbb{R}^d}(\mathbf{x}_i, \mathbf{x}_j) \approx \text{dissimilarity}_{\mathbb{R}^k}(\widetilde{\mathbf{x}}_i, \widetilde{\mathbf{x}}_j)$

▶ Optional: find a mapping $f : \mathbb{R}^d \to \mathbb{R}^k, \tilde{\mathbf{x}}_i = f(\mathbf{x}_i)$.

General setting

Preserve the pairwise distances (Agrawal, Ali, and Boyd 2021)

 $\forall (i,j), \text{ similarity}_{\mathbb{R}^d}(\mathbf{x}_i, \mathbf{x}_j) \approx \text{ similarity}_{\mathbb{R}^k}(\widetilde{\mathbf{x}}_i, \widetilde{\mathbf{x}}_j) \text{ or } \\ \forall (i,j), \text{ dissimilarity}_{\mathbb{R}^d}(\mathbf{x}_i, \mathbf{x}_j) \approx \text{ dissimilarity}_{\mathbb{R}^k}(\widetilde{\mathbf{x}}_i, \widetilde{\mathbf{x}}_j)$

• Optional: find a mapping $f : \mathbb{R}^d \to \mathbb{R}^k, \tilde{\mathbf{x}}_i = f(\mathbf{x}_i)$.

Example with $\|\cdot\|_2^2$

• Can we find $\delta \in [0,1]$ and $f : \mathbb{R}^d \to \mathbb{R}^k$ such that

$$(1-\delta)\|\mathbf{x}_{i}-\mathbf{x}_{j}\|_{2}^{2} \leq \|f(\mathbf{x}_{i})-f(\mathbf{x}_{j})\|_{2}^{2} \leq (1+\delta)\|\mathbf{x}_{i}-\mathbf{x}_{j}\|_{2}^{2}?$$
(6)

Table of contents

Why dimension reduction?

Principal component analysis

The principle of PCA Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods (T)SNE

Autoencoders

Johnson-Lindenstrauss lemma

Johnson and Lindenstrauss 1984

Let $0 < \delta < 1$ and any dataset $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$. Provided that

$$k > 15\delta^{-2}\log(n)$$

there is a matrix $\mathbf{A} \in \mathbb{R}^{k imes d}$, such that,

$$\forall (i,j) \in [\![n]\!]^2, (1-\delta) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_j\|_2^2 \le (1+\delta) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2.$$

Johnson-Lindenstrauss lemma

Johnson and Lindenstrauss 1984

Let $0 < \delta < 1$ and any dataset $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$. Provided that

$$k > 15\delta^{-2}\log(n)$$

there is a matrix $\mathbf{A} \in \mathbb{R}^{k \times d}$, such that,

$$\forall (i,j) \in [\![n]\!]^2, (1-\delta) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_j\|_2^2 \le (1+\delta) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2.$$

Important comments

- The mapping is linear + exists for any dataset!
- k does not depend on the dimension d!
- Magical: **A** can be drawn randomly: $A_{ij} \sim \mathcal{N}(0, \frac{1}{k})$.
- This is tight in some sense (Larsen and Nelson 2017).
- Caveat: n = 300 samples, δ = 10% already requires k > 8555 (smaller in practice).

Johnson-Lindenstrauss in practice

• Real dataset in $\mathbb{R}^{38 \times 7129}$, $\delta = 0.15$.

- For various choices of k, draw random Gaussian $A \sim \mathcal{N}(0, \frac{1}{k}) \in \mathbb{R}^{k \times d}$.
- Compare distances between Ax_is to distances between x_is.

Multidimensional scaling (MDS)

Learn from pairwise distances

- ▶ Distances in the big space: $D_{ij} = d(\mathbf{x}_i, \mathbf{x}_j)$ for some "metric" D.
- Find $\mathbf{x}_1, \cdots, \mathbf{\tilde{x}}_n \in \mathbb{R}^k$ that minimizes:

$$\operatorname{stress}_{D}(\tilde{\mathbf{x}_{1}},\cdots,\tilde{\mathbf{x}}_{n}) = \sum_{i\neq j} \left(D_{ij} - \|\tilde{\mathbf{x}}_{i} - \tilde{\mathbf{x}}_{j}\|_{2} \right)^{2}$$
(7)

- Eq. (7) usually called stress minimization: $\|\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_j\|_2 \approx D_{ij}$.
- ► Can also be used for embedding nodes x_i of a graph (not only Euclidean).
- Can be solved with eigenvalue decomposition.
- ▶ ⚠️ No mapping from the high dim space to the lower dim space.

Multidimensional scaling (MDS)

With digits dataset:

A selection from the 64-dimensional digits dataset

Learn from pairwise similarities

- Similarities in high-dim space encoded as a graph with weights **W**.
- Examples: $W_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|_2^2/2\sigma^2)$, nearest neighbors graph.

Learn from pairwise similarities

► Similarities in high-dim space encoded as a graph with weights **W**.

• Examples: $W_{ij} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2/2\sigma^2)$, nearest neighbors graph.

• Find $\tilde{\mathbf{x}_1}, \cdots, \tilde{\mathbf{x}}_n \in \mathcal{S} \subset (\mathbb{R}^k)^n$ that minimizes:

$$\sum_{(i,j)\in\mathcal{E}} W_{ij} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = \operatorname{tr}(\tilde{\mathbf{X}} \mathsf{L} \tilde{\mathbf{X}}^\top)$$
(8)

▶ Interpretation: $\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j$ close when W_{ij} is high *i.e.* high-dim points similar.

Learn from pairwise similarities

► Similarities in high-dim space encoded as a graph with weights **W**.

- Examples: $W_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|_2^2/2\sigma^2)$, nearest neighbors graph.
- Find $\mathbf{x}_1, \cdots, \mathbf{x}_n \in S \subset (\mathbb{R}^k)^n$ that minimizes:

$$\sum_{(i,j)\in\mathcal{E}} W_{ij} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = \operatorname{tr}(\tilde{\mathbf{X}}\mathsf{L}\tilde{\mathbf{X}}^\top)$$
(8)

▶ Interpretation: $\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j$ close when W_{ij} is high *i.e.* high-dim points similar.

- S: constraints on the embedding (e.g. centered, standardized)
- Recover PCA with $\mathbf{W} = \mathbf{X}\mathbf{X}^{\top}$.
- L is the Laplacian of the graph with weights W

Learn from pairwise similarities

► Similarities in high-dim space encoded as a graph with weights **W**.

- Examples: $W_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|_2^2/2\sigma^2)$, nearest neighbors graph.
- Find $\tilde{\mathbf{x}_1}, \cdots, \tilde{\mathbf{x}}_n \in \mathcal{S} \subset (\mathbb{R}^k)^n$ that minimizes:

$$\sum_{(i,j)\in\mathcal{E}} W_{ij} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = \operatorname{tr}(\tilde{\mathbf{X}}\mathsf{L}\tilde{\mathbf{X}}^\top)$$
(8)

▶ Interpretation: $\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j$ close when W_{ij} is high *i.e.* high-dim points similar.

- S: constraints on the embedding (e.g. centered, standardized)
- Recover PCA with $\mathbf{W} = \mathbf{X}\mathbf{X}^{\top}$.
- L is the Laplacian of the graph with weights W
- Can be solved with eigenvalue decomposition.
- ▶ ⚠️ No mapping from the high dim space to the lower dim space.

With digits dataset:

A selection from the 64-dimensional digits dataset

Table of contents

Why dimension reduction?

Principal component analysis

The principle of PCA Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods (T)SNE Autoencoders

Learn from pairwise similarities

- ▶ One of the most used algorithm (G. E. Hinton and Roweis 2002).
- Similarities in the high-dim space:

$$\mathsf{P}_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2/2\sigma_i^2)}, \mathsf{P}_{ii} = 0.$$

Similarities in the low-dim space:

$$Q_{ij} = rac{\exp(-\|\mathbf{ ilde{x}}_i - \mathbf{ ilde{x}}_j\|_2^2)}{\sum_{k
eq i} \exp(-\|\mathbf{ ilde{x}}_i - \mathbf{ ilde{x}}_k\|_2^2)}, Q_{ii} = 0$$
 .

Learn from pairwise similarities

- ▶ One of the most used algorithm (G. E. Hinton and Roweis 2002).
- Similarities in the high-dim space:

$$\mathsf{P}_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|_2^2/2\sigma_i^2)}, \mathsf{P}_{ii} = 0.$$

Similarities in the low-dim space:

$$egin{aligned} Q_{ij} &= rac{ ext{exp}(-\| ilde{ extbf{x}}_i- ilde{ extbf{x}}_j\|_2^2)}{\sum_{k
eq i} ext{exp}(-\| ilde{ extbf{x}}_i- ilde{ extbf{x}}_k\|_2^2)}, \, Q_{ii} &= 0 \,. \end{aligned}$$

 $\blacktriangleright \ \overline{\mathbf{P}} = \frac{1}{2} (\mathbf{P} + \mathbf{P}^{\top}), \overline{\mathbf{Q}} = \frac{1}{2} (\mathbf{Q} + \mathbf{Q}^{\top})$

► SNE: find $(\tilde{\mathbf{x}}_1, \cdots, \tilde{\mathbf{x}}_n)$ that minimizes $\mathsf{KL}(\overline{\mathbf{P}}|\overline{\mathbf{Q}}) = \sum_{ij} \overline{P}_{ij} \log(\frac{\overline{P}_{ij}}{\overline{Q}_{ii}})$.

• σ_i local scaling, tuned with *entropic affinities* with fixed *perplexity*.

 t-SNE variant for the kernel Q (t-Student) (Van der Maaten and G. Hinton 2008).

With digits dataset:

A selection from the 64-dimensional digits dataset

On the perplexity parameter

(σ_i)_i local scalings are found so that (Vladymyrov and Carreira-Perpinan 2013):

$$orall i \in \llbracket n
rbracket, \mathsf{H}(P_{i,:}) = -\sum_j P_{ij} \log(P_{ij}) = \log(\mathsf{perp})$$

On the perplexity parameter

(σ_i)_i local scalings are found so that (Vladymyrov and Carreira-Perpinan 2013):

$$orall i \in \llbracket n
rbracket, \mathsf{H}(P_{i,:}) = -\sum_j P_{ij} \log(P_{ij}) = \log(\mathsf{perp})$$

Be aware of ...

- ► (T)SNE has tendency to show non-existent clusters for small perplexity
- ► (T)SNE struggles in high-dim! In practice: PCA first.
- No geometrical relations between clusters.
- Difficult to interpret, sensitive to perplexity.
- ▶ ⚠️ No mapping from the high dim space to the lower dim space.

Table of contents

Why dimension reduction?

Principal component analysis

The principle of PCA Singular value decomposition

Minimum distortion embedding

General setting Random projections

Some nonlinear methods

(T)SNE Autoencoders

Autoencoders

Principle

- Send the point x from \mathbb{R}^d to \mathbb{R}^k with an *encoder* E.
- Map back the code/latent variable E(x) to the original space with a decoder D.
- Decoded code should be close to the original point.
- Code dimension $k \ll$ original dimension d.
- Autoencoder: E and D are neural networks!

- Architecture of E and D is fixed (number of layers, non-linearity, type of layers)
- Typical fully-connected neural networks are a combination of matrix multiplication + bias with pointwise non-linearity:

$$g_{\mathcal{K}} \circ \cdots \circ g_1$$
 where $g_k(\mathbf{x}) = \sigma(\mathbf{W}_k \mathbf{x} + \mathbf{b}_k)$

Weights are learned by solving:

$$\min_{D,E} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - D(E(\mathbf{x}_i))\|_2^2$$

Optimisation is performed with first-order methods (SGD, Adam).

Autoencoder application to MNIST

MNIST data: 28 × 28 images (784 pixels)

• Compressed into \mathbb{R}^2 with Autoencoder or PCA

Top: original, middle: autoencoder, bottom: PCA.

Visualizing the latent space

- Pick a test image, find its code $(a, b) \in \mathbb{R}^2$.
- Plot decoder output for $(a \pm i\delta, b \pm j\delta)$.
- Continuous deformation from one digit to another.

Extensions: variational autoencoders (codes should follow a fixed law, e.g. Gaussian); different objective function (Kingma and Welling 2013)
References I

Agrawal, Akshay, Alnur Ali, and Stephen Boyd (2021). "Minimum-Distortion Embedding". In: *Foundations and Trends*® in Machine Learning 14.

- Cline, Alan Kaylor and Inderjit S. Dhillon (2006). Computation of the Singular Value Decomposition. CRC Press.
- Fan, Ky (1949). "On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I*". In: Proceedings of the National Academy of Sciences 35.11.
- Halko, N., P. G. Martinsson, and J. A. Tropp (2011). "Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions". In: SIAM Review 53.2, pp. 217–288.
- Hinton, Geoffrey E and Sam Roweis (2002). "Stochastic neighbor embedding". In: Advances in neural information processing systems 15.
- Johnson, William and Joram Lindenstrauss (1984). "Extensions of Lipschitz maps into a Hilbert space". In: *Contemporary Mathematics* 26.
- Kingma, Diederik P and Max Welling (2013). "Auto-encoding variational bayes". In: *arXiv preprint arXiv:1312.6114*.

References II

Larsen, Kasper Green and Jelani Nelson (2017). "Optimality of the
Johnson-Lindenstrauss Lemma". In: 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 633–638.
Mairal, Julien et al. (2009). "Online Dictionary Learning for Sparse
Coding". In: International Conference on Machine Learning.
Pearson, Karl (1901). "On lines and planes of closest fit to systems of
points in space". In: Philosophical Magazine Series 1 2, pp. 559–572.
Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller (2005).
"Kernel principal component analysis". In: Artificial Neural
Networks—ICANN'97: 7th International Conference Lausanne,
Switzerland, October 8–10, 1997 Proceeedings. Springer, pp. 583–588.
Van der Maaten, Laurens and Geoffrey Hinton (2008). "Visualizing data
using t-SNE.". In: Journal of machine learning research 9.11.
Vladymyrov, Max and Miguel Carreira-Perpinan (2013). "Entropic affinities:
Properties and efficient numerical computation". In: International
conference on machine learning. PMLR, pp. 477–485.