Dimension reduction

Mathurin Massias & Titouan Vayer

email: firstname.lastname@inria.fr

V4

: informatics #” mathematics

Table of contents

Why dimension reduction?

Principal component analysis
The principle of PCA
Singular value decomposition

Minimum distortion embedding
General setting
Random projections

Some nonlinear methods
(T)SNE
Autoencoders

Why dimension reduction?

> Visualize high-dimensional data (in 2D or 3D).

» Interpret the data: find meaningful compact representations.
» Compress the data: advantages for storage and robustness.
» Reveal the “structure of the data”.

» Avoid the curse of dimensionality.

Curse of dimensionality

2

7

r

121

/

|
e

T3

» Number of points needed to cover the hypercube cube [0, 1] with

precision r: (%)d

» Distances between points become meaningless. Pairwise distances
between 50 points on the unit sphere of RY:

d=2

d=10

d =100

d = 1000

600 4

600

counts

200

0 1

distance

400 4

0

0

1 2

distance

600 4

400 4

200 4

0

600 4

400 4

200 4

0

1

distance

0 1 3
distance

Unsupervised dataset

d
>
i
XT X1
T X11 X112 ... Xid T
s T e | X
X: . =
.T Xn1 Xp2 ... Xpd n .
X, .
.......... sprreseees
Xn

Unsupervised learning
> The dataset contains the samples (x;)!_; where n is the number of
samples of size d.
» d and n define the dimensionality of the learning problem.

» Data stored as a matrix X € R"*? that contains the training samples
as rows.

Unsupervised dataset

d
>
i
x; 2]
T X11 X112 ... Xid T
LS 2 N e | S X
X: . =
.T Xn1 Xp2 ... Xpd n .
X, .
.......... sprreseees
Xn

Unsupervised learning
> The dataset contains the samples (x;)!_; where n is the number of
samples of size d.
» d and n define the dimensionality of the learning problem.

» Data stored as a matrix X € R"*? that contains the training samples
as rows.

> A in ML vectors are sometimes described in row instead of
column

The big picture

Original dataset

PCA Spectral TSNE

o

Objective

(x), = (%€R")] withk<d

1

> Project the data into a low dimensional space R¥ with k < d
> Preserve the information in the data (class, subspace, similarities)

The big picture

Original dataset

PCA

Spectral

TSNE

MDS

Objective

(x)iey = ()”(,-GR")LI

> Project the data into a low dimensional space R¥ with k < d

with k < d

> Preserve the information in the data (class, subspace, similarities)

Modeling choices

» Linear, non linear projection?

» Similarity between samples.

The big picture

Original dataset

PCA

MDS

Spectral

TSNE

Objective

(x)iey = ()”(,-GR")LI

> Project the data into a low dimensional space R¥ with k < d

with k < d

> Preserve the information in the data (class, subspace, similarities)

Modeling choices Methods

» Linear, non linear projection? > PCA, random projections.

» Similarity between samples.

> Non-linear methods (MDS,
tSNE, Auto-Encoder)

Dimension reduction vs subsampling

Dimension reduction

‘ Random projections

Feature selection, sparsity

Minimum distorsion
embedding, PCA

Subsampling

| Coresets

| Importance sampling

Table of contents

Principal component analysis
The principle of PCA

The principle

Setting

» A dataset X = (x1, - ,x,) € R™? with d big.
> Suppose for simplicity >, x; = 0 (centered data), i.e. X"1, = 0.

4 iy 2 4 0 2000 T4 Y 2 4 0 2000

The principle

Setting

> A dataset X = (x1, - ,%,) € R™? with d big.
> Suppose for simplicity >, x; = 0 (centered data), i.e. X"1, = 0.

Goal
» Find coordinates X; = f(x;) in R¥ with k < d.
» The new data (X;)jc[s should “look like" X (to be defined).

The principle of PCA

Linear mapping according to a reconstruction principle

» Find U = (ug, - ,ux) € R¥* with u] uy, = 8,y (orthonormal vectors)

» Dimension reduction via linear mapping: %; = UTx; € R¥

The principle of PCA

Linear mapping according to a reconstruction principle
» Find U = (uy,--- ,ux) € R¥k with u u,, = 6,m (orthonormal vectors)
» Dimension reduction via linear mapping: %; = U x; € R¥
» What make a U "better” than another?

The principle of PCA

Linear mapping according to a reconstruction principle
» Find U = (uy,--- ,ux) € R¥k with u,] u,, = d,m (orthonormal vectors)
» Dimension reduction via linear mapping: %; = U x; € R¥

» Reconstruction principle (Pearson 1901):

1< 1
min — > lIxi — U3 = - > lxi — UUTx;|3
3@3 ot =

=l

» UU Tx; is the linear projection of x; onto span(uy, -, uy)

The principle of PCA

Linear mapping according to a reconstruction principle

» Find U = (ug,- -+ ,ux) € R¥* with u] uy, = 8,y (orthonormal vectors)
» Dimension reduction via linear mapping: %; = U'x; € R¥

» Reconstruction principle (Pearson 1901):

min Z |x; — U%;[|2 = Z |xi — UU T x; |13

UeR™ X N =
vlu=l,

> After finding a sol. U*, x; ~ Zjlf:1<x,, uf)u’ (equality when k = d).

= x — UUTx|

S UUTx = 2o (% upy;

lHlustration

00

0 -25

Projected points on u;

00

0 25

X =XxuUT

=0.25 0.00
uy

—=0.50

=0.75

10

w

uy

Variance interpretation

Equivalent problem

» The PCA problem is equivalent to the non-convex quadratic problem:

b
1 1
T2 — TlyT
uemn;)ik;E U x;||5=tr | U (nX X)U

uTu=l, TR

Variance interpretation

Equivalent problem

» The PCA problem is equivalent to the non-convex quadratic problem:

x>
1 1
= U'x|2=tr|UT(=X"X)U
max ;II xil3 = tr (n)

» Equivalent to maximizing the variance of the projected samples X;.

PCA

» Empirical covariance matrix X = %XTX € R9xd

recap: Two views on PCA

The PCA is the linear mapping x — % = Ux € R¥ that (equivalently):

» minimizes the reconstruction error
UeR?* T2
min 5%y, g Ixi — UU "x|

» maximizes the variance of the projected data

max Z||Ux,||2
Rdxk

UTU I

Now how do we compute this optimal U?

Computing PCA: the Ky-Fan theorem

Fan 1949

Let A € R symmetric with eigenvalues \; > --- > \y and k < d.

Then,
k

tr(UTAU) =) ;. 1
UeRanQ?UXTU:Ik 4) ;)
A solution of (1) is given by U* = (ua,,...,ua,) where ua,,...,ua,

are eigenvectors of A respectively associated to the top-k eigenvalues.

Computing PCA: the Ky-Fan theorem

Fan 1949

Let A € R symmetric with eigenvalues \; > --- > \y and k < d.
Then,

K
tr(UTAU) =) ;. 1
UeRanQ?UXTU:Ik 4) ;)
A solution of (1) is given by U* = (ua,,...,ua,) where ua,,...,ua,

are eigenvectors of A respectively associated to the top-k eigenvalues.

Consequences for PCA
> Solution of PCA: find the k largest eigenvalues of & = IXTX € R4,
> Solution U* = (u7, ..., u}) associated to the top-k eigenvalues of T

> uf € R ... u; € RY are called principal components.

> A the decomposition is not unique ! (eigenvectors sign flip)

Computing PCA: the Ky-Fan theorem

Fan 1949

Let A € R symmetric with eigenvalues \; > --- > \y and k < d.
Then,

K
tr(UTAU) =) ;. 1
UeRanQ?UXTU:Ik 4) ;)
A solution of (1) is given by U* = (ua,,...,ua,) where ua,,...,ua,

are eigenvectors of A respectively associated to the top-k eigenvalues.

Consequences for PCA
> Solution of PCA: find the k largest eigenvalues of & = IXTX € R4,
> Solution U* = (u7, ..., u}) associated to the top-k eigenvalues of T

> uf € R ... u; € RY are called principal components.

> A the decomposition is not unique ! (eigenvectors sign flip)

Example with 3D data

» Simple 3D data.

> Projection onto the two firsts principal components (d =3 — k = 2).
PCA

1.04

0.5

0.0 4

—0.51

—1.0 A

Example with eigenfaces

Faces from dataset

Setting
» Each image is a vector x; € R*%% (d = 4096 pixels), n = 400 images.

Example with eigenfaces

Faces from dataset

Setting
» Each image is a vector x; € R*%% (d = 4096 pixels), n = 400 images.
> Find k “eigenfaces’: principal components uj,...,u; € R

. e . k .
> Idea: explain images via x; & } . (x;, uf)uy, in other words

image ~ a; x eigenface 1+ --- 4 o x eigenface k

Example with eigenfaces

» Result with k =6

Eigenfaces - SVD
il

—0.04 —-0.02 0.00 0.02 0.04

Example with eigenfaces

» How to choose k? ratio explained variance: r = Zf-;l i/ Zj-jzl Ai

=
=)

o
o

o
o

I
>

o©
[N)

Ratio explained variance

o
<)

0 50 100 150 200 250 300 350 400
k

> Explanation: P d
SR
i=1 i=1

- tr_((u*)Ti:u*)) Jtr(E)

Iem .., 1<
= EZ ||Xi||§/; Z ||Xi||§
i=1 i=1

How to compute the PCA?

The “naive” way
.

> Find the eigenvalue decomposition of & = 1XTX = 1 577 xx;
Compute : O(nd?) operations.

Eigenvalue decomposition : O(d®) operations.

4
>
» Keep only the k-largest eigenvalues associated to k eigenvectors.
» Space complexity: O(d?)

>

Time complexity: O(nd? + d®)

How to compute the PCA?

The “naive” way
.

i

> Find the eigenvalue decomposition of £ = 1XTX =137 x;x
Compute : O(nd?) operations.
Eigenvalue decomposition : O(d®) operations.

4
>
» Keep only the k-largest eigenvalues associated to k eigenvectors.
» Space complexity: O(d?)

>

Time complexity: O(nd? + d®)

The right way
» Compute the singular value decomposition (SVD) of X!

Table of contents

Principal component analysis

Singular value decomposition

One of the most useful tools in linear algebra

Singular value decomposition

Let X € R"%9. Then X can be decomposed as
X=Uxzv' (2)

where U € R™" V € R9%9 are unitary (UTU = UUT =1, VTV =
VVT = 1,) and X € R"™ is a rectangular diagonal matrix with non-

negative real numbers (0;)icmin{n,q}] ON the diagonal, called singular
values.

One of the most useful tools in linear algebra

Singular value decomposition

Let X € R"%9. Then X can be decomposed as
X=Uxzv' (2)

where U € R™" V € R9%9 are unitary (UTU = UUT =1, VTV =
VVT = 1,) and X € R"™ is a rectangular diagonal matrix with non-
negative real numbers (0;)icmin{n,q}] ON the diagonal, called singular
values.

Properties

» rank(X) = number of non-zero o/s.

The columns of V are eigenvectors of X T X € R¥*¢,

We have o; = y/eigenvalue;(XTX) = \/eigenvalue;(XXT).

>
» The columns of U are eigenvectors of XX € R"*".
>
» We have the relations Xv; = oju;, X Tu; = ojv;.

SVD: many flavors

X U X v’ With:
a %, |, UTU=UUT =1,
. =3 n | VIV=vV'=1,
E <T>

Full SVD (image in case n > d)

» Generalizes eigenvalue decomposition for non-symmetric matrices.

» Complexity: O(nd min{n, d}) (Golub—Reinsch algorithm see Cline and
Dhillon 2006).

» To find the eigenvalues of XX or XX T we do not even have to
compute these matrices!

SVD: many flavors

X U > VAl
E dll e d
) n p—
5 —
< d d
2 With: U'U =1,

Thin SVD
> If we write U = (ug, - ,u,),V = (v, - ,vg) the full SVD, then Thin
SVD gives:

min{n,d}

X = E (T,'U,'V,T
i=1

SVD: many flavors

X U b)) VAl
2 1 ‘
> ?“l »_ "“|
-2 n _—n ‘T’ a
g With: r = rank(X)
U Y

U'u=Vv'v=I,
d T
Compact SVD

> Keep only the non-zero singular values. In particular r = rank(X).
» The pseudo-inverse of X is given by X = VE~!UT.

SVD: many flavors

a . X U X Al

% A

T — kT d

g Calculate only k

E ' q singular values
d k

Truncated SVD
> Best rank-k approximation of X (in the sense of || - ||g, || - [[2—2)-
» The solution of the PCA is given by V € RY*k,
» The embedding (X;)ics in low dim of PCA is given by UE € R"*k.
> Efficient algorithms O(ndk) (Halko, Martinsson, and Tropp 2011).

PCA: a recap

Dimension reduction RY — R¥ via a linear mapping.
Defined with a matrix U with orthonormal columns.
Follows a reconstruction principle.

Maximizes the variance of the projected samples.
Used for compression, interpretation, robustness.

Can be computed with SVD in O(ndk) time with truncated SVD
(randomness).

vVvyVvyVvYyyvYyy

v

In practice it is common to normalize your data before doing PCA.

A word on Kernel PCA

From PCA...
> PCAsolves max tr (U (XTX)U).
UcR*
uTu=l,

> Eigenvalue decomposition of XX = Sy xix; € R9*d.

> Same non-zero eigenvalues as XX = ({x;,x;)); € R™" (exercise).

A word on Kernel PCA

From PCA...
> PCAsolves max tr (U (XTX)U).
UcR*
uTu=l,

> Eigenvalue decomposition of XX = Sy xix; € R9*d.

> Same non-zero eigenvalues as XX = ({x;,x;)); € R™" (exercise).

. to Kernel PCA (Schélkopf, Smola, and Miiller 2005)

» PCA in a high-dimensional non-linear embedding ®(x) of the data.
> Kernel trick: embedding is implicit we only need K = ({®(x;), ®(x;)));.
» Kernel PCA: eigenvalue decomposition of K € R"*",

» More powerful but expensive for large n.

A word on Kernel PCA

From PCA...
> PCAsolves max tr (U (XTX)U).
UcR*
uTu=l,

> Eigenvalue decomposition of XX = "7 | x;x, € R9*4.

> Same non-zero eigenvalues as XX = ({x;,x;)); € R™" (exercise).

... to Kernel PCA (Schélkopf, Smola, and Miiller 2005)

» PCA in a high-dimensional non-linear embedding ®(x) of the data.
> Kernel trick: embedding is implicit we only need K = ({®(x;), ®(x;)));.
» Kernel PCA: eigenvalue decomposition of K € R"*".

» More powerful but expensive for large n.

PCA Kernel PCA y=0.2 Kernel PCA y=0.4 Kernel PCA y=8

A more general setting: dictionary learning

From PCA...

» One principle of PCA is to represent a sample as a linear combination
X~ Zjl.;l a;d; with d; € RY.
> PCA: o = (x,uf},dj = u’ principal component.

A more general setting: dictionary learning

From PCA...

» One principle of PCA is to represent a sample as a linear combination
x~ Y ayd; with d; € R,

» PCA: o = (x,u?),d; = u?¥ principal component.
J J J J

... to dictionary learning (DL)

> Represent x in another “basis”: x ~ Da (e.g. Fourier/Wavelet basis).
» D € RI*¥ s the dictionary. k might be bigger than d (overcomplete)

» o € RF is the representation of x in the dictionary D.

A more general setting: dictionary learning

Find the representation

» Given a point x and a dictionary D:

& = argmin ||x — Daf3
aeC

> When C = R, DTD = I, then & = DT x.

» Can also be used with different losses than || - ||3.

)

A more general setting: dictionary learning

Find the representation

» Given a point x and a dictionary D:

& = argmin ||x — Daf3 3)
aeC

> When C = R, DTD = I, then & = DT x.

» Can also be used with different losses than || - ||3.

Learn the representation and the dictionary

» Given a dataset xi,--- ,X,, learn the dictionary and the representations
1 n

Dva\la"' aa;: argmin *Z”X,*DQ,”% (4)
DeD n=

ag,on€C

> When C =R¥ D= {D € R¥** DD = I} we retrieve the PCA.
» But various possibilities (Mairal et al. 2009)!

» Scikit-learn implementation : sklearn.decomposition.DictionaryLearning

One example

Sparse dictionary learning

» Given a dataset xq1,--- ,X,, learn the dictionary and the representations
1 n
~N — —~ . 2
Dvala"' ,&p = argmin *ZHX,‘-DQ,’”2. (5)
DeD h=

ay,,0neC

» Take D = {D € R¥*k: Vi ||d;||2 = 1} (normalized columns).
> Take C = {a: ||a]|1 < A} sparsity promoting regularization.

> Example d = 2, k = 3 (not dimension reduction!!)

PCA N DL

Table of contents

Minimum distortion embedding
General setting

General setting

Preserve the pairwise distances (Agrawal, Ali, and Boyd 2021)
> A dataset X = (xg,--- ,%,),x; € R9.
> Find a dataset X = (X1, ,%Xn),X; € R¥ k < d such that

V(i,j), similaritygs(x;,x;) ~ similarityg«(X;, X;) or
V(i,j), dissimilarityga(x;,x;) = dissimilarityg« (X;, X;)

» Optional: find a mapping f : RY — Rk x; = f(x;).

General setting

Preserve the pairwise distances (Agrawal, Ali, and Boyd 2021)
> A dataset X = (xg,--- ,%,),x; € R9.
> Find a dataset X = (X1, ,%Xn),X; € R¥ k < d such that

Y(i,j), similarityga(x;,x;) ~ similarityg« (X;,X;) or
V(i,j), dissimilarityga(x;,x;) = dissimilarityg« (X;, X;)

» Optional: find a mapping f : RY — Rk x; = f(x;).
Example with || - [|3
» Can we find § € [0,1] and f : R? — R such that

(1= 0)llxi = xjlI3 < [IF(xi) = F(x)I[5 < (1 +3)llxi —x;l|137 (6)

Table of contents

Minimum distortion embedding

Random projections

Johnson-Lindenstrauss lemma

Johnson and Lindenstrauss 1984

Let 0 < § < 1 and any dataset x1,--- ,x, € R?. Provided that
k > 1552 log(n),
there is a matrix A € R¥*9 such that,

V(i,j) € [, (1 = 0)llxi = x;13 < [Ax; — Ax;3 < (14 6)llxi — x5

Johnson-Lindenstrauss lemma

Johnson and Lindenstrauss 1984

Let 0 < § < 1 and any dataset x1,--- ,x, € R?. Provided that
k > 1552 log(n),
there is a matrix A € R¥*9 such that,

V(i,j) € [, (1 = 0)llxi = x;13 < [Ax; — Ax;3 < (14 6)llxi — x5

Important comments

The mapping is linear + exists for any dataset!
k does not depend on the dimension d!
Magical: A can be drawn randomly: A; ~ N(0, %)

This is tight in some sense (Larsen and Nelson 2017).

vVvyVvyVvVvyy

Caveat: n =300 samples, § = 10% already requires k > 8555 (smaller
in practice).

Johnson-Lindenstrauss in practice

P Real dataset in R38x7129 5§ — (.15.
> For various choices of k, draw random Gaussian A ~ N(0, 1) € R¥*9.

» Compare distances between Ax;s to distances between x;s.

16 I

n — miniz; |Ax; — Ax[[?/[|x; — x;]|?
maxiz; || Ax; — Ax[|*/[Ix; — x;|?

29 N — Kiheo

1.0

08 T TTTTTTTTTTTTTTTTTTTTTTTTTTT T

0.6

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
k

Multidimensional scaling (MDS)

Learn from pairwise distances

> Distances in the big space: Djj = d(x;, x;) for some “metric” D.
» Find X1, -, %, € R¥ that minimizes:

stressp (X1, -+, %n) = > _ (Dy — [[%i — %[|2)? (7)
i)

» Eq. (7) usually called stress minimization: ||X; — X;||2 ~ Dj;.

v

Can also be used for embedding nodes x; of a graph (not only
Euclidean).

» Can be solved with eigenvalue decomposition.

> A No mapping from the high dim space to the lower dim space.

Multidimensional scaling (MDS)

> With digits dataset:

MDS embedding (time 2.959s)

A selection from the 64-dimensional digits dataset

B L 0 P O 0 o3 T b
o D e e e
Ll Tl b TP =T o
(=E- Y b b b b] =
B N T P P o T s
o ol =W D e i B D
o0 W o T L o e L
T 3 T R el 3 T e
i gy [T o P e O [,
O o0 T ol T P o sl O

Laplacian/spectral embedding

Learn from pairwise similarities

> Similarities in high-dim space encoded as a graph with weights W.
> Examples: Wj = exp(—||x; — x;||3/20?), nearest neighbors graph.

Laplacian/spectral embedding

Learn from pairwise similarities

> Similarities in high-dim space encoded as a graph with weights W.
> Examples: Wj = exp(—||x; — x;||3/20?), nearest neighbors graph.

» Find X1, ,%, € S C (R¥)" that minimizes:
Y Wil — %[5 = tr(XLXT) (8)
(ij)e€

> Interpretation: X;,X; close when Wj; is high i.e. high-dim points similar.

Laplacian/spectral embedding

Learn from pairwise similarities

> Similarities in high-dim space encoded as a graph with weights W.
> Examples: Wj = exp(—||x; — x;||3/20?), nearest neighbors graph.

» Find X1, ,%, € S C (R¥)" that minimizes:
Y Wil — %[5 = tr(XLXT) (8)
(ij)e€

> Interpretation: X;,X; close when Wj; is high i.e. high-dim points similar.

> S: constraints on the embedding (e.g. centered, standardized)
Recover PCA with W = XX .
L is the Laplacian of the graph with weights W

vy

Laplacian/spectral embedding

Learn from pairwise similarities

> Similarities in high-dim space encoded as a graph with weights W.
> Examples: Wj = exp(—||x; — x;||3/20?), nearest neighbors graph.

» Find X1, ,%, € S C (R¥)" that minimizes:
Y Wil — %[5 = tr(XLXT) (8)
(ij)e€

> Interpretation: X;,X; close when Wj; is high i.e. high-dim points similar.

> S: constraints on the embedding (e.g. centered, standardized)
» Recover PCA with W = XX

» L is the Laplacian of the graph with weights W

>

>

Can be solved with eigenvalue decomposition.

& No mapping from the high dim space to the lower dim space.

Laplacian/spectral embedding

> With digits dataset:

A selection from the 64-dimensional digits dataset

0143450413

504134505
F5044354C0C
422404413312
4915051200
1314424344
JL405T745%%
12ZF5%4001
LI45042347%
42340055 °F

Spectral embedding (time 0.240s)

Table of contents

Some nonlinear methods
(T)SNE

Stochastic neighbor embedding (SNE)

Learn from pairwise similarities

» One of the most used algorithm (G. E. Hinton and Roweis 2002).
> Similarities in the high-dim space:

exp(—|[xi — x;l[3/207)

P = Pi=0.
L o= lxi = xkll3/207)7 "
» Similarities in the low-dim space:
S g2
exp(—||%; — X;
Qij p(|| ! J||2) Qii -0.

a Zk;éi exp(—||%; — %[3)’

Stochastic neighbor embedding (SNE)

Learn from pairwise similarities

>
>

vy VYy

One of the most used algorithm (G. E. Hinton and Roweis 2002).

Similarities in the high-dim space:

p, = —oxeClxi *lel%/%f?) R0,
Zk;ﬁi exp(—|[xi — xk[[5/207)

Similarities in the low-dim space:

__exp(=[% — %;l3)
Zk;éi exp(— 1% — %«[13)’

Qjj Qi=0.

P=1P+P"),Q=3(Q+Q")

SNE: find (%, ,%») that minimizes KL(P[Q) = 3=, Py log(£).
ij

o; local scaling, tuned with entropic affinities with fixed perplexity.

t-SNE variant for the kernel Q (t-Student) (Van der Maaten and

G. Hinton 2008).

Stochastic neighbor embedding (SNE)

> With digits dataset:

A selection from the 64-dimensional digits dataset

0143450413

t-SNE embeedding (time 1.324s)

504134505
504435400
422404413312
4915051200
1304924744
JL405T745% %
12ZF5%4001
LI45042347%
42340055 °F

Stochastic neighbor embedding (SNE)

On the perplexity parameter

» (0;); local scalings are found so that (Vladymyrov and Carreira-Perpinan
2013):

Vi e [n],H(P;.) = — Z P;j log(P;) = log(perp)

Stochastic neighbor embedding (SNE)

On the perplexity parameter

» (0;); local scalings are found so that (Vladymyrov and Carreira-Perpinan
2013):

Vi€ [n],H(P;.) = — Z P;log(P;;) = log(perp)

Be aware of ...

> (T)SNE has tendency to show non-existent clusters for small perplexity
> (T)SNE struggles in high-dim! In practice: PCA first.
» No geometrical relations between clusters.

» Difficult to interpret, sensitive to perplexity.
> A No mapping from the high dim space to the lower dim space.
t-SNE perp=3 t-SNE perp=50 t-SNE perp=200 t-SNE perp=500

,Dm %?@5 %%%'%&%;%m

‘D?ﬂ @
Iy

Table of contents

Some nonlinear methods

Autoencoders

Autoencoders

s..e es .-V
N ﬂ(:oqqr 62‘.:0‘6_ o
| hON . [|
[| [|
[| [|
m N H HE m
x € R4 D(E(x)) € R?
B p m m N
[| % = E(x) € R* [|
[| [|
[| ad . [|

Principle
> Send the point x from R? to R¥ with an encoder E.

» Map back the code/latent variable E(x) to the original space with a
decoder D.

» Decoded code should be close to the original point.
» Code dimension k < original dimension d.
» Autoencoder: E and D are neural networks!

Learning autoencoders

> Architecture of E and D is fixed (number of layers, non-linearity, type
of layers)

» Typical fully-connected neural networks are a combination of matrix
multiplication + bias with pointwise non-linearity:

8k o -+ o g1 where gx(x) = o(Wkx + by)

» Weights are learned by solving:

min Z Ixi — D(E(x:))I3

> Optimisation is performed with first-order methods (SGD, Adam).

Autoencoder application to MNIST

> MNIST data: 28 x 28 images (784 pixels)
» Compressed into R? with Autoencoder or PCA

3léls(2]2]2[7]1017]5
slélslzlal2l7]0]7[5
HEOOBEBaEaE

Top: original, middle: autoencoder, bottom: PCA.

Visualizing the latent space

> Pick a test image, find its code (a, b) € R2.
> Plot decoder output for (a =+ id, b + jd).
» Continuous deformation from one digit to another.

Extensions: variational autoencoders (codes should follow a fixed law, e.g.
Gaussian); different objective function (Kingma and Welling 2013)

References |

Agrawal, Akshay, Alnur Ali, and Stephen Boyd (2021).
“Minimum-Distortion Embedding”. In: Foundations and Trends(R) in
Machine Learning 14.

Cline, Alan Kaylor and Inderjit S. Dhillon (2006). Computation of the
Singular Value Decomposition. CRC Press.

Fan, Ky (1949). “On a Theorem of Weyl Concerning Eigenvalues of Linear
Transformations |*¥". In: Proceedings of the National Academy of
Sciences 35.11.

Halko, N., P. G. Martinsson, and J. A. Tropp (2011). “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate
Matrix Decompositions”. In: SIAM Review 53.2, pp. 217-288.

Hinton, Geoffrey E and Sam Roweis (2002). “Stochastic neighbor
embedding”. In: Advances in neural information processing systems 15.
Johnson, William and Joram Lindenstrauss (1984). “Extensions of Lipschitz

maps into a Hilbert space”. In: Contemporary Mathematics 26.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational

bayes”. In: arXiv preprint arXiv:1312.6114.

References |l

[8 Larsen, Kasper Green and Jelani Nelson (2017). “Optimality of the
Johnson-Lindenstrauss Lemma". In: 2017 |EEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 633-638.

@ Mairal, Julien et al. (2009). “Online Dictionary Learning for Sparse

Coding”. In: International Conference on Machine Learning.
Pearson, Karl (1901). “On lines and planes of closest fit to systems of
points in space”. In: Philosophical Magazine Series 1 2, pp. 559-572.

@ Schélkopf, Bernhard, Alexander Smola, and Klaus-Robert Miiller (2005).
“Kernel principal component analysis”. In: Artificial Neural
Networks—ICANN'97: 7th International Conference Lausanne,
Switzerland, October 8-10, 1997 Proceeedings. Springer, pp. 583-588.

[@ Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing data
using t-SNE.". In: Journal of machine learning research 9.11.

@ Vladymyrov, Max and Miguel Carreira-Perpinan (2013). “Entropic affinities:
Properties and efficient numerical computation”. In: International
conference on machine learning. PMLR, pp. 477-485.

=)

	Why dimension reduction?
	Principal component analysis
	The principle of PCA
	Singular value decomposition

	Minimum distortion embedding
	General setting
	Random projections

	Some nonlinear methods
	(T)SNE
	Autoencoders

	References

