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Euclidean to Fréchet barycenter

Let x1, · · · , xN ∈ Rd and (λ1, · · · , λN) ∈ ΣN (histogram).

Standard barycenter

x̂ =
N∑
i=1

λixi = argmin
x∈Rd

N∑
i=1

λi∥x− xi∥22 . (1)

Median barycenter

x̂ = argmin
x∈Rd

N∑
i=1

λi∥x− xi∥2 . (2)

Fréchet barycenter
x1, · · · , xN ∈ XN where (X , d) metric space.

x̂ = argmin
x∈X

N∑
i=1

λid
2(x, xi ) . (3)
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Wasserstein barycenter

Let α1, · · · , αN ∈ P(Rd) probability measures and (λ1, · · · , λN) ∈ ΣN .

Wasserstein barycenter
It is a probability measure µ̂ solving

µ̂ = argmin
µ∈P(Rd )

N∑
i=1

λiW
2
2 (µ, αi ) . (4)
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λiW
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2 (µ, αi ) . (4)

Discrete case when N = 2: Mccan’s interpolant
When α1 =

∑n
i=1 aiδxi (source), α2 =

∑m
j=1 bjδyj (target) are discrete. If P

is an optimal coupling µ̂ =
∑

ij Pijδ(1−t)xi+tyj : n +m − 1 points.
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7.2. Discretization on Uniform Staggered Grids 105

paths. McCann’s interpolation finds many applications, for instance, color, shape,
and illumination interpolations in computer graphics [Bonneel et al., 2011].

–0 –1/5 –2/5 –3/5 –4/5 –1

Figure 7.2: Comparison of displacement interpolation (7.8) of discrete measures. Top: point clouds
(empirical measures (–0,–1) with the same number of points). Bottom: same but with varying weights.
For 0 < t < 1, the top example corresponds to an empirical measure interpolation –t with N points,
while the bottom one defines a measure supported on 2N ≠ 1 points.

7.2 Discretization on Uniform Staggered Grids

For simplicity, we describe the numerical scheme in dimension d = 2; the extension to
higher dimensions is straightforward. We follow the discretization method introduced
by Papadakis et al. [2014], which is inspired by staggered grid techniques which are
commonly used in fluid dynamics. We discretize time as tk = k/T œ [0, 1] and assume
the space is uniformly discretized at points xi = (i1/n1, i2/n2) œ X = [0, 1]2. We
use a staggered grid representation, so that –t is represented using a œ R(T+1)◊n1◊n2

associated to half grid points in time, whereas J is represented using J = (J1,J2),
where J1 œ RT◊(n1+1)◊n2 and J1 œ RT◊n1◊(n2+1) are stored at half grid points in each
space direction. Using this representation, for (k, i1, i2) œ J1, T K ◊ J1, n1K ◊ J1, n2K, the
time derivative is computed as

(ˆta)k,i
def.= ak+1,i ≠ ak,i

and spatial divergence as

div(J)k,i
def.= J1

k,i1+1,i2 ≠ J1
k,i1,i2 + J2

k,i1,i2+1 ≠ J2
k,i1,i2 , (7.10)

which are both defined at grid points, thus forming arrays of RT◊n1◊n2 .
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Let α1, · · · , αN ∈ P(Rd) probability measures and (λ1, · · · , λN) ∈ ΣN .
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It is a probability measure µ̂ solving
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N∑
i=1
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146 Variational Wasserstein Problems

Minimizing (9.21) with respect to each gs, while keeping all the other variables
fixed, is obtained in closed form by (9.18). Minimizing (9.21) with respect to all the
(fs)s requires us to solve for a using (9.20) and leads to the expression (9.19).

Figures 9.3 and 9.4 show applications to 2-D and 3-D shapes interpolation. Fig-
ure 9.5 shows a computation of barycenters on a surface, where the ground cost is the
square of the geodesic distance. For this figure, the computations are performed us-
ing the geodesic in heat approximation detailed in Remark 4.19. We refer to [Solomon
et al., 2015] for more details and other applications to computer graphics and imaging
sciences.

Figure 9.3: Barycenters between four input 2-D shapes using entropic regularization (9.15). To display
a binary shape, the displayed images shows a thresholded density. The weights (⁄s)s are bilinear with
respect to the four corners of the square.

The e�cient computation of Wasserstein barycenters remains at this time an active
research topic [Staib et al., 2017a, Dvurechenskii et al., 2018]. Beyond their methodolog-
ical interest, Wasserstein barycenters have found many applications outside the field
of shape analysis. They have been used for image processing [Rabin et al., 2011], in
particular color modification [Solomon et al., 2015] (see Figure 9.6); Bayesian computa-
tions [Srivastava et al., 2015a,b] to summarize measures; and nonlinear dimensionality
reduction, to express an input measure as a Wasserstein barycenter of other known
measures [Bonneel et al., 2016]. All of these problems result in involved nonconvex
objective functions which can be accurately optimized using automatic di�erentiation
(see Remark 9.1.3). Problems closely related to the computation of barycenters include
the computation of principal components analyses over the Wasserstein space (see, for

Figure: Peyré, Cuturi, et al. 2019



The barycentric mapping

Let µs =
∑n

i=1 aiδxi (source), µt =
∑m

j=1 bjδyj (target). Let P be optimal
coupling between µs , µt with cost c .

Weighted barycenter with OT plan

▶ Source to target

Ts→t : xi → argmin
y

m∑
j=1

Pijc(y, yj) (5)

▶ When c = ℓ22, mapping the entire data Ts→t(X) = diag(P1m)
−1PY.

▶ If P = ab⊤,Ts→t(xi ) =
∑m

j=1 bjyj .



The barycentric mapping
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Supervised ML

Samples + labels:

X =


x⊤1
x⊤2
...
x⊤n

 c =


c1
c2
...
cn



Classification Regression

Supervised learning

▶ The dataset contains the samples (xi , ci )
n
i=1 where xi is the feature

sample and ci its label/class.

▶ The values to predict (label) can be concatenated in a vector c

▶ Semi-supervised learning: few labeled points are available, but a large
number of unlabeled points are given.
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Regression

⇒

Objective

(xi , ci )
n
i=1 ⇒ f : Rd → R

▶ Train a function f (x) = c ∈ R predicting a continuous value.

▶ Can be extended to multi-value prediction (Rp).

Hyperparameters

▶ Type of function (linear,
kernel, neural network).

▶ Performance measure.

▶ Regularization.

Methods
▶ Least Square (LS).

▶ Ridge regression, Lasso.

▶ Kernel regression.

▶ Deep learning.
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Binary classification

⇒

Objective

(xi , ci )
n
i=1 ⇒ f : Rd → {−1, 1}

▶ Train a function f (x) = c ∈ C predicting a binary value (e.g .{−1, 1}).
▶ f (x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

▶ Type of function (linear,
kernel, neural network).

▶ Performance measure.

▶ Regularization.

Methods
▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.
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Multiclass classification

⇒

Objective

(xi , ci )
n
i=1 ⇒ f : Rd → {1, . . . ,K}

▶ Train a function f (x) = c ∈ {1, . . . ,K} predicting an integer value.



Empirical risk minimization

Minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

ℓ(ci , f (xi )) (ERM)

▶ ℓ is a loss function

ℓ (true value, predicted value) = how good is my prediction

▶ It is called empirical risk minimization (ERM)

▶ Given the loss, finds the “best” f on the training data

▶ E.g. linear regression
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Domain adaptation

Traditional supervised learning

▶ We want to learn predictor such that
c ≈ f (x).

▶ Actual p(x , c) unknown.

▶ We have access to training dataset
(xi , ci )i=1,...,n (p̂(x , c)).

▶ We choose a loss function ℓ(c , f (x)) that
measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

min
f

E(x,c)∼p̂(x,c) ℓ(c , f (x)) =
∑
j

ℓ(cj , f (xj))

 (6)

▶ Well known generalization results for predicting on new data.



Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context
▶ Classification problem with data coming from different sources

(domains).

▶ Distributions are different but related.



Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems
▶ Labels only available in the source domain, and classification is

conducted in the target domain.

▶ Classifier trained on the source domain data performs badly in the
target domain



Is Domain Adaptation a real problem ?

▶ Ubiquitous problem in Deep Learning ! People can not afford to label
billions of data for every single problems

▶ Novel interesting challenges if one considers learning from synthetic
data



The pig picture

Many shifts are possible.
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Unsupervised and semi-supervised DA

Unsupervised DA
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Adapted classifier

Class 1

Class 2
Source classifier

▶ Source : {xsi , csi }
ns
i=1

▶ Target : {xtj }
nt
j=1

▶ Requires assumptions on
the shift (CS, TS, CD,
SSB).

Semi-Supervised DA

S
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Adapted classifier

Class 1

Class 2
Source classifier

▶ Source : {xsi , csi }
ns
i=1

▶ Target : {xtj }
nt
j=1, {c tj }

nl
j=1

▶ The few nl ≪ nt labeled
target samples can help
guide the learning on
target.



Domain adaptation

Problem: how to learn a classifier that can be good on several domains with
only labels in one of the domain ?

▶ Theory Mansour, Mohri, and Rostamizadeh 2009 measures the
difficulty of this task in terms of discrepancy of the representations of
the data.

▶ Possible solutions include:
▶ Find domain invariant representation of the data.
▶ Transform data from one domain into “similar” versions in the other

domain (adversarial methods).
▶ At any point a notion of divergence between the distributions is

involved.
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Optimal transport for domain adaptation
Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Assumptions
1. There exist an OT mapping T in the feature space between the two

domains.

2. The transport preserves the joint distributions:

Ps(x, c) = P t(T (x), c).

3-step strategy Courty et al. 2016
1. Estimate optimal transport between distributions (use regularization).

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.



Label propagation

4-step strategy Redko et al. 2019
1. One-hot encoding of the classes in the source

domain. E.g. if K classes {1, 2, · · · ,K}

csi = 2 → csi =

K︷ ︸︸ ︷
(0, 1, · · · , 0)

2. Find a good OT plan P between source and
target.

3. Propagate the labels of the source into the
target.

∀j ∈ [nt ], ĉtj =
1

bj

ns∑
i=1

Pijc
s
i = Tt→s(c

s
i ) .

4. (optional) Find the class with maximal
coordinate for prediction. E.g.

ĉtj = (0.1, 0.8, 0.1) → ĉ tj = 2.



Why it is a good idea ? (few intuitions)

Using duality theory

W1(α, β) = sup
f∈Lip1

Ex∼α[f (x)]− Ey∼β[f (y)] .

Let errors(f ) = E(x,c)∼Ps [ℓ(c , f (x))], errort(f ) = E(x,c)∼Pt [ℓ(c , f (x))] and

FL,ℓ = {f : X → C , ℓ(·, f (·)) ∈ LipL} .

Take
▶ Best error on target f ⋆ ∈ argminf∈FL,ℓ

errort(f ).
▶ Best error on source fs ∈ argminf∈FL,ℓ

errors(f ).

Then
0 ≤ errort(fs)− errort(f

⋆) ≤ 2L ·W1(P
s ,P t) .

Conclusion if Ps ,P t are closed in OT then perf should be good.

Deep domain adaptation Damodaran et al. 2018
Let P f = 1

nt

∑nt
j=1 δ(xtj ,f (xtj )) and P̂s = 1

ns

∑ns
i=1 δ(xsi ,csi ). Solve

min
f

W1(P̂
s ,P f ) .
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