Computational Optimal Transport for Machine and Deep Learning

Introduction to domain adaptation

Mathurin Massias, Titouan Vayer, Quentin Bertrand.

December 11, 2024

Table of contents

A story of barycenters

The domain adaptation problem
Remember machine learning
Domain adaptation
OT for domain adaptation

Acknowledgments

Slides adapted from those of Rémi Flamary

Euclidean to Fréchet barycenter

Let $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^d$ and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$ (histogram).

Standard barycenter

$$\hat{\mathbf{x}} = \sum_{i=1}^{N} \lambda_i \mathbf{x}_i = \underset{\overline{\mathbf{x}} \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^{N} \lambda_i \|\overline{\mathbf{x}} - \mathbf{x}_i\|_2^2.$$
 (1)

Euclidean to Fréchet barycenter

Let $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^d$ and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$ (histogram).

Standard barycenter

$$\hat{\mathbf{x}} = \sum_{i=1}^{N} \lambda_i \mathbf{x}_i = \underset{\overline{\mathbf{x}} \in \mathbb{R}^d}{\arg \min} \sum_{i=1}^{N} \lambda_i \|\overline{\mathbf{x}} - \mathbf{x}_i\|_2^2.$$
 (1)

Median barycenter

$$\hat{\mathbf{x}} = \underset{\overline{\mathbf{x}} \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^{N} \lambda_i \|\overline{\mathbf{x}} - \mathbf{x}_i\|_2.$$
 (2)

Euclidean to Fréchet barycenter

Let $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^d$ and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$ (histogram).

Standard barycenter

$$\hat{\mathbf{x}} = \sum_{i=1}^{N} \lambda_i \mathbf{x}_i = \underset{\overline{\mathbf{x}} \in \mathbb{R}^d}{\arg \min} \sum_{i=1}^{N} \lambda_i \|\overline{\mathbf{x}} - \mathbf{x}_i\|_2^2.$$
 (1)

Median barycenter

$$\hat{\mathbf{x}} = \underset{\overline{\mathbf{x}} \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{i=1}^N \lambda_i \|\overline{\mathbf{x}} - \mathbf{x}_i\|_2.$$
 (2)

Fréchet barycenter

 $\mathbf{x}_1, \cdots, \mathbf{x}_N \in X^N$ where (X, d) metric space.

$$\hat{\mathbf{x}} = \underset{\overline{\mathbf{x}} \in X}{\operatorname{arg\,min}} \sum_{i=1}^{N} \lambda_i d^2(\overline{\mathbf{x}}, \mathbf{x}_i). \tag{3}$$

Let $\alpha_1, \dots, \alpha_N \in \mathcal{P}(\mathbb{R}^d)$ probability measures and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$.

Wasserstein barycenter

It is a probability measure $\hat{\mu}$ solving

$$\hat{\mu} = \underset{\overline{\mu} \in \mathcal{P}(\mathbb{R}^d)}{\min} \sum_{i=1}^{N} \lambda_i W_2^2(\overline{\mu}, \alpha_i). \tag{4}$$

Let $\alpha_1, \dots, \alpha_N \in \mathcal{P}(\mathbb{R}^d)$ probability measures and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$.

Wasserstein barycenter

It is a probability measure $\hat{\mu}$ solving

$$\hat{\mu} = \underset{\overline{\mu} \in \mathcal{P}(\mathbb{R}^d)}{\min} \sum_{i=1}^N \lambda_i W_2^2(\overline{\mu}, \alpha_i).$$
 (4)

Discrete case when N = 2: Mccan's interpolant

When $\alpha_1 = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}$ (source), $\alpha_2 = \sum_{j=1}^m b_j \delta_{\mathbf{y}_j}$ (target) are discrete. If P is an optimal coupling $\hat{\mu} = \sum_{ij} P_{ij} \delta_{(1-t)\mathbf{x}_i + t\mathbf{y}_j}$: n+m-1 points.

Let $\alpha_1, \dots, \alpha_N \in \mathcal{P}(\mathbb{R}^d)$ probability measures and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$.

Wasserstein barycenter

It is a probability measure $\hat{\mu}$ solving

$$\hat{\mu} = \underset{\overline{\mu} \in \mathcal{P}(\mathbb{R}^d)}{\min} \sum_{i=1}^N \lambda_i W_2^2(\overline{\mu}, \alpha_i). \tag{4}$$

Discrete case when N=2: Mccan's interpolant

When $\alpha_1 = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}$ (source), $\alpha_2 = \sum_{j=1}^m b_j \delta_{\mathbf{y}_j}$ (target) are discrete. If P is an optimal coupling $\hat{\mu} = \sum_{ij} P_{ij} \delta_{(1-t)\mathbf{x}_i + t\mathbf{y}_i}$: n + m - 1 points.

Let $\alpha_1, \dots, \alpha_N \in \mathcal{P}(\mathbb{R}^d)$ probability measures and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$.

Wasserstein barycenter

It is a probability measure $\hat{\mu}$ solving

$$\hat{\mu} = \underset{\overline{\mu} \in \mathcal{P}(\mathbb{R}^d)}{\min} \sum_{i=1}^N \lambda_i W_2^2(\overline{\mu}, \alpha_i). \tag{4}$$

Wasserstein

Let $\alpha_1, \dots, \alpha_N \in \mathcal{P}(\mathbb{R}^d)$ probability measures and $(\lambda_1, \dots, \lambda_N) \in \Sigma_N$.

Wasserstein barycenter

It is a probability measure $\hat{\mu}$ solving

$$\hat{\mu} = \underset{\overline{\mu} \in \mathcal{P}(\mathbb{R}^d)}{\min} \sum_{i=1}^N \lambda_i W_2^2(\overline{\mu}, \alpha_i). \tag{4}$$

Figure: Peyré, Cuturi, et al. 2019

Let $\mu_s = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}$ (source), $\mu_t = \sum_{j=1}^m b_j \delta_{\mathbf{y}_j}$ (target). Let P be optimal coupling between μ_s , μ_t with cost c.

Weighted barycenter with OT plan

Source to target

$$T_{s \to t} : \mathbf{x}_i \to \arg\min_{\overline{\mathbf{y}}} \sum_{j=1}^m P_{ij} c(\overline{\mathbf{y}}, \mathbf{y}_j)$$
 (5)

- ▶ When $c = \ell_2^2$, mapping the entire data $T_{s \to t}(\mathbf{X}) = \text{diag}(P1_m)^{-1}P\mathbf{Y}$.
- ▶ If $P = ab^{\top}$, $T_{s \to t}(\mathbf{x}_i) = \sum_{i=1}^{m} b_i \mathbf{y}_i$.

Table of contents

A story of barycenters

The domain adaptation problem Remember machine learning

Domain adaptation
OT for domain adaptation

Supervised ML

Samples + labels: Classification Regression
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix} \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Supervised learning

- ▶ The dataset contains the samples $(\mathbf{x}_i, c_i)_{i=1}^n$ where \mathbf{x}_i is the feature sample and c_i its label/class.
- ▶ The values to predict (label) can be concatenated in a vector **c**

Supervised ML

Samples + labels: Classification Regression
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix} \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Supervised learning

- ▶ The dataset contains the samples $(\mathbf{x}_i, c_i)_{i=1}^n$ where \mathbf{x}_i is the feature sample and c_i its label/class.
- ▶ The values to predict (label) can be concatenated in a vector c
- Semi-supervised learning: few labeled points are available, but a large number of unlabeled points are given.

Regression

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \mathbb{R}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathbb{R}$ predicting a continuous value.
- ▶ Can be extended to multi-value prediction (\mathbb{R}^p).

Regression

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \Rightarrow f: \mathbb{R}^d \to \mathbb{R}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathbb{R}$ predicting a continuous value.
- ▶ Can be extended to multi-value prediction (\mathbb{R}^p).

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- ► Regularization.

Regression

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \mathbb{R}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathbb{R}$ predicting a continuous value.
- \triangleright Can be extended to multi-value prediction (\mathbb{R}^p).

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Methods

- Least Square (LS).
- Ridge regression, Lasso.
- Kernel regression.
- Deep learning.

Binary classification

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathcal{C}$ predicting a binary value $(e.g.\{-1,1\})$.
- f(x) = 0 defines the boundary on the partition of the feature space.

Binary classification

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathcal{C}$ predicting a binary value $(e.g.\{-1,1\})$.
- f(x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- ► Regularization.

Binary classification

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\}$$

- ▶ Train a function $f(\mathbf{x}) = c \in \mathcal{C}$ predicting a binary value $(e.g.\{-1,1\})$.
- f(x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Methods

- Bayesian classifier (LDA, QDA)
- Linear and kernel discrimination.
- Decision trees, random forests.
 - Deep learning.

Multiclass classification

Objective

$$(\mathbf{x}_i, c_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{1, \dots, K\}$$

▶ Train a function $f(\mathbf{x}) = c \in \{1, ..., K\}$ predicting an integer value.

Empirical risk minimization

Minimizing the train error

To find f the idea is to **minimize the averaged error** on the training samples:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(c_i, f(\mathbf{x}_i))$$
 (ERM)

Empirical risk minimization

Minimizing the train error

To find f the idea is to **minimize the averaged error** on the training samples:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(c_i, f(\mathbf{x}_i))$$
 (ERM)

 \triangleright ℓ is a loss function

 ℓ (true value, predicted value) = how good is my prediction

- It is called empirical risk minimization (ERM)
- ▶ Given the loss, finds the "best" f on the training data
- ► E.g. linear regression

Table of contents

A story of barycenters

The domain adaptation problem

Remember machine learning

Domain adaptation

OT for domain adaptation

Domain adaptation

Amazon

Traditional supervised learning

- We want to learn predictor such that $c \approx f(\mathbf{x})$.
- ightharpoonup Actual p(x, c) unknown.
- We have access to training dataset $(\mathbf{x}_i, c_i)_{i=1,...,n} (\hat{p}(x, c))$.
- We choose a loss function $\ell(c, f(x))$ that measure the discrepancy.

Empirical risk minimization

We week for a predictor f minimizing

$$\min_{f} \left\{ \mathbb{E}_{(\mathbf{x},c) \sim \hat{\rho}(\mathbf{x},c)} \ \ell(c,f(\mathbf{x})) = \sum_{j} \ell(c_{j},f(\mathbf{x}_{j})) \right\}$$
(6)

Well known generalization results for predicting on new data.

Domain Adaptation problem

Probability Distribution Functions over the domains

Our context

- Classification problem with data coming from different sources (domains).
- Distributions are different but related.

Unsupervised domain adaptation problem

Problems

- Labels only available in the **source domain**, and classification is conducted in the **target domain**.
- Classifier trained on the source domain data performs badly in the target domain

Is Domain Adaptation a real problem?

- Ubiquitous problem in Deep Learning! People can not afford to label billions of data for every single problems
- ► Novel interesting challenges if one considers learning from synthetic data

The pig picture

Many shifts are possible.

Unsupervised and semi-supervised DA

Unsupervised DA

- Source : $\{\mathbf{x}_i^s, c_i^s\}_{i=1}^{n_s}$
- ► Target : $\{\mathbf{x}_j^t\}_{j=1}^{n_t}$
- Requires assumptions on the shift (CS, TS, CD, SSB).

Semi-Supervised DA

- ► Source : $\{\mathbf{x}_i^s, c_i^s\}_{i=1}^{n_s}$
- ► Target : $\{\mathbf{x}_{j}^{t}\}_{j=1}^{n_{t}}$, $\{c_{j}^{t}\}_{j=1}^{n_{l}}$
- The few $n_l \ll n_t$ labeled target samples can help guide the learning on target.

Domain adaptation

Problem: how to learn a classifier that can be good on several domains with only labels in one of the domain ?

- ► Theory Mansour, Mohri, and Rostamizadeh 2009 measures the difficulty of this task in terms of discrepancy of the representations of the data.
- Possible solutions include:
 - Find domain invariant representation of the data.
 - Transform data from one domain into "similar" versions in the other domain (adversarial methods).
 - At any point a notion of divergence between the distributions is involved.

Table of contents

A story of barycenters

The domain adaptation problem

Remember machine learning Domain adaptation

OT for domain adaptation

Optimal transport for domain adaptation

Assumptions

- 1. There exist an OT mapping T in the feature space between the two domains.
- 2. The transport preserves the joint distributions:

$$P^s(\mathbf{x},c) = P^t(T(\mathbf{x}),c).$$

3-step strategy Courty et al. 2016

- 1. Estimate optimal transport between distributions (use regularization).
- 2. Transport the training samples on target domain.
- 3. Learn a classifier on the transported training samples.

Label propagation

4-step strategy Redko et al. 2019

1. One-hot encoding of the classes in the source domain. E.g. if K classes $\{1,2,\cdots,K\}$

$$c_i^s = 2 \rightarrow \mathbf{c}_i^s = \overbrace{(0,1,\cdots,0)}^{\mathcal{K}}$$

- 2. Find a good OT plan *P* between source and target.
- 3. Propagate the labels of the source into the target.

$$\forall j \in [n_t], \ \widehat{\mathbf{c}_j^t} = \frac{1}{b_j} \sum_{i=1}^{n_s} P_{ij} \mathbf{c}_i^s = T_{t \to s}(\mathbf{c}_i^s).$$

$$\widehat{\mathbf{c}}_{j}^{t} = (0.1, 0.8, 0.1) \rightarrow \widehat{c}_{j}^{t} = 2.$$

Why it is a good idea? (few intuitions)

Using duality theory

$$W_1(\alpha, \beta) = \sup_{f \in \mathsf{Lip}_1} \ \mathbb{E}_{\mathbf{x} \sim \alpha}[f(\mathbf{x})] - \mathbb{E}_{\mathbf{y} \sim \beta}[f(\mathbf{y})].$$

Let
$$\operatorname{error}_s(f) = \mathbb{E}_{(\mathbf{x},c) \sim P^s}[\ell(c,f(\mathbf{x}))], \operatorname{error}_t(f) = \mathbb{E}_{(\mathbf{x},c) \sim P^t}[\ell(c,f(\mathbf{x}))]$$
 and
$$\mathcal{F}_{I,\ell} = \{f: X \to C, \ell(\cdot,f(\cdot)) \in \operatorname{Lip}_I \}.$$

Take

- ▶ Best error on target $f^* \in \arg\min_{f \in \mathcal{F}_{t,\ell}} \operatorname{error}_t(f)$.
- ▶ Best error on source $f_s \in \arg\min_{f \in \mathcal{F}_{t,\ell}} \operatorname{error}_s(f)$.

Then

$$0 \leq \operatorname{error}_t(f_s) - \operatorname{error}_t(f^*) \leq 2L \cdot W_1(P^s, P^t)$$
.

Conclusion if P^s , P^t are closed in OT then perf should be good.

Deep domain adaptation Damodaran et al. 2018

Let
$$P^f = \frac{1}{n_t} \sum_{j=1}^{n_t} \delta_{(\mathbf{x}_i^t, f(\mathbf{x}_j^t))}$$
 and $\hat{P}^s = \frac{1}{n_s} \sum_{i=1}^{n_s} \delta_{(\mathbf{x}_i^s, c_i^s)}$. Solve

$$\min_{f} W_1(\hat{P}^s, P^f)$$
.

References I

- Courty, Nicolas et al. (2016). "Optimal transport for domain adaptation". In: *IEEE transactions on pattern analysis and machine intelligence* 39.9, pp. 1853–1865.
- Damodaran, Bharath Bhushan et al. (2018). "Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation". In: *Proceedings of the European conference on computer vision (ECCV)*, pp. 447–463.
- Mansour, Yishay, Mehryar Mohri, and Afshin Rostamizadeh (2009). "Domain adaptation: Learning bounds and algorithms". In: arXiv preprint arXiv:0902.3430.
- Peyré, Gabriel, Marco Cuturi, et al. (2019). "Computational optimal transport: With applications to data science". In: Foundations and Trends® in Machine Learning 11.5-6, pp. 355–607.
- Redko, levgen et al. (2019). "Optimal transport for multi-source domain adaptation under target shift". In: *The 22nd International Conference on artificial intelligence and statistics*. PMLR, pp. 849–858.