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Euclidean to Fréchet barycenter

Let x1, -+ ,xy € R? and (A, -, Ay) € Ty (histogram).

Standard barycenter
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Euclidean to Fréchet barycenter

Let x1, -+ ,xy € R? and (A, -, Ay) € Ty (histogram).
Standard barycenter

N N
X = Z AiX; = argmin Z AIHX - X,‘||§ .
i=1

X d
XERT iy

Median barycenter

N
% = arg min Z Ail|X = xi|2 -
XcRd i=1

Fréchet barycenter
x1,- - ,xy € XN where (X, d) metric space.

N
X = arg min E Nid?(X,x;) .
xeX

(1)
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Wasserstein barycenter

Let ag,---,an € P(RY) probability measures and (\g, - - -

Wasserstein barycenter
It is a probability measure [i solving
N
il = arg min Z N W2 (T, o) .
REP(RY)

,)\N) € XN

(4)



Wasserstein barycenter

Let ay,--- ,an € P(RY) probability measures and (A1, -+, Ay) € Zn.

Wasserstein barycenter
It is a probability measure i solving
N
[l = arg min Z NWE(T, o) - (4)
meEPRY) 4

Discrete case when N = 2: Mccan's interpolant

When ay = 377 aidy; (source), ap = > 7", bjdy; (target) are discrete. If P

is an optimal coupling i = Eu Pijd(1—tyx;+ty;: 1+ m—1 points.



Wasserstein barycenter

Let aq, -+ ,ay € P(RY) probability measures and (A, -, An) € Ty.

Wasserstein barycenter

It is a probability measure [i solving
N
fl = arg min Z N WE (T, o) .
nePRY) 4

Discrete case when N = 2: Mccan's interpolant

When a3 = Y7 ; aidy, (source), ap = Y., bjdy, (target) are discrete.

J
is an optimal coupling i = Eu Piid(1—tyx;+ty;: 1+ m—1 points.
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Wasserstein barycenter

Let ag,---,ay € P(RY) probability measures and (A1, -+, Ay) € Zn.

Wasserstein barycenter

It is a probability measure i solving
N
[l = arg min Z NWE(T, o) - (4)
rEPRY)
L2 Wasserstein Matrix C




Wasserstein barycenter

Let ag,---,ay € P(RY) probability measures and (A1, -+, An) € Zn.

Wasserstein barycenter

It is a probability measure [i solving
N

fi = arg min Z N WE (T, o) . 4)
meEPRY) T4
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Figure: Peyré, Cuturi, et al. 2019




The barycentric mapping

Let ps = Y/ aidy, (source), pur = Y1 bjdy, (target). Let P be optimal
coupling between g, 11+ with cost c.

Weighted barycenter with OT plan

» Source to target
Tost 1 Xj — arg}llinz Pic(y,y;) (5)
y j=1
> When ¢ = £3, mapping the entire data T,_,+(X) = diag(P1,) ' PY.
> If P=ab’, To(x) = ij:1 bjy;.

X;
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The barycentric mapping
Barycentric mapping
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The barycentric mapping

0.4

Barycentric mapping with reg OT (reg=0.001)
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The barycentric mapping
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Barycentric mapping with reg OT (reg=0.01)
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The barycentric mapping

0.4 1

Barycentric mapping with reg OT (reg=0.1)
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Supervised ML

Samples + labels: Classification

Regression
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Supervised learning

> The dataset contains the samples (x;, c,-);’:1 where x; is the feature
sample and ¢; its label/class.

» The values to predict (label) can be concatenated in a vector ¢



Supervised ML

Samples + labels:

Classification Regression
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Supervised learning

> The dataset contains the samples (x;, c,-);’:1 where x; is the feature
sample and ¢; its label/class.

» The values to predict (label) can be concatenated in a vector ¢

» Semi-supervised learning: few labeled points are available, but a large
number of unlabeled points are given.



Regression
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Objective

(X,‘, Ci)?:l = f: Rd —R
> Train a function f(x) = ¢ € R predicting a continuous value
> Can be extended to multi-value prediction (RP).




Regression

wfe

Objective
(X,‘, Ci)?:l = f: Rd —R
> Train a function f(x) = ¢ € R predicting a continuous value.
> Can be extended to multi-value prediction (RP).

Hyperparameters

» Type of function (linear,
kernel, neural network).
» Performance measure.

» Regularization.



Regression
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Objective

(X,‘, Ci)?:l = f: Rd — R

> Train a function f(x) = ¢ € R predicting a continuous value.
> Can be extended to multi-value prediction (RP).

Hyperparameters Methods
» Type of function (linear, > Least Square (LS).
kernel, neural network). > Ridge regression, Lasso.
» Performance measure. > Kernel regression.

» Regularization. » Deep learning.



Binary classification

Objective
(xie)iy = f:RY—{-1,1}

» Train a function f(x) = ¢ € C predicting a binary value (e.g.{—1,1}).
> f(x) = 0 defines the boundary on the partition of the feature space.



Binary classification

Objective
(xie)iy = f:RY—{-1,1}
» Train a function f(x) = ¢ € C predicting a binary value (e.g.{—1,1}).
> f(x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

> Type of function (linear,
kernel, neural network).
» Performance measure.

» Regularization.



Binary classification

Objective
(xie)iy = f:RY—{-1,1}

» Train a function f(x) = ¢ € C predicting a binary value (e.g.{—1,1}).
> f(x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters Methods
> Type of function (linear, > Bayesian classifier (LDA, QDA)
kernel, neural network). > Linear and kernel discrimination
» Performance measure. » Decision trees, random forests.

» Regularization. » Deep learning.



Multiclass classification

Objective
(xi,Ci);T:l = f:Rd%{l,...,K}

> Train a function f(x) = c € {1,..., K} predicting an integer value.



Empirical risk minimization

Minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min %Zaq, F(x:)) (ERM)



Empirical risk minimization

Minimizing the train error

To find f the idea is to minimize the averaged error on the training
samples:

min %Zz(q, F(x:)) (ERM)

» /is a loss function
£ (true value, predicted value) = how good is my prediction

> It is called empirical risk minimization (ERM)
» Given the loss, finds the “best” f on the training data

» E.g. linear regression
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Domain adaptation

Amazen Traditional supervised learning

» We want to learn predictor such that
c ~ f(x).

> Actual p(x, c) unknown.

)

A » We have access to training dataset
‘ @{@ % (xis €i)i=1,....n (B(x, C)).
S - > We choose a loss function ¢(c, f(x)) that
measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

mfin IE(x,c)wf)(x,c) E(Q f(X)) = Ze(cjﬂ f(xj)) (6)

» Well known generalization results for predicting on new data.



Domain Adaptation problem

Amazon oLsA

‘ ‘ OMI

Feature ext tracﬂon Feature extraction

A‘;é‘

Probability Distribution Functions over the domains

Our context

» Classification problem with data coming from different sources
(domains).

» Distributions are different but related.



Unsupervised domain adaptation problem

c1o

@&@é‘;;@m

Feature extraction l + La be | s

oh L

Target Domain

Feature extraction l no Iabels '

Source Domain

Problems
> Labels only available in the source domain, and classification is

conducted in the target domain.
» Classifier trained on the source domain data performs badly in the

target domain



Is Domain Adaptation a real problem ?

» Ubiquitous problem in Deep Learning ! People can not afford to label
billions of data for every single problems

» Novel interesting challenges if one considers learning from synthetic
data

(A) Syn2Real-C Training Domain

&% welnv |}
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The pig picture

Many shifts are possible.

Source data
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Target data

Covariate shift

Target shift

Conditional shift

Subspace shift
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Unsupervised and semi-supervised DA

Unsupervised DA
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Source :

{xi. 7,
{xj}jL
Requires assumptions on
the shift (CS, TS, CD,
SSB).

Target :

Source :

{x7, 7}

{xt nrl {Ct}
The few n; < n; labeled
target samples can help
guide the learning on
target.

Target :



Domain adaptation

Problem: how to learn a classifier that can be good on several domains with
only labels in one of the domain ?

» Theory Mansour, Mohri, and Rostamizadeh 2009 measures the
difficulty of this task in terms of discrepancy of the representations of
the data.

» Possible solutions include:

» Find domain invariant representation of the data.
» Transform data from one domain into “similar” versions in the other

domain (adversarial methods).
> At any point a notion of divergence between the distributions is

involved.
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Optimal transport for domain adaptation

Dataset

Optimal transport Classification on transported samples

++ Class 1

Samples x;

i +0 samples Ty (w})

+0 samples T, ()
5 ¢
Samples x! ~G: Samples x!

-0 Samplesx!
Classifier onx;

— Classifier on T ()

Assumptions

1. There exist an OT mapping T in the feature space between the two
domains.
2. The transport preserves the joint distributions:
P(x,c) = PY(T(x),c).
3-step strategy Courty et al. 2016

1. Estimate optimal transport between distributions (use regularization).
2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.



Label propagation

4-step strategy Redko et al. 2019

1. One-hot encoding of the classes in the source
domain. E.g. if K classes {1,2,---,K}

K
——
¢=2-¢=(01,-,0)

2. Find a good OT plan P between source and = )
target. °®

3. Propagate the labels of the source into the
target.

Vj € [ne], cf = ZPUC Tios(c?).

4. (optional) Find the class with maximal
coordinate for prediction. E.g.
=(0.1,0.8,0.1) — ¢f = 2.



Why it is a good idea ? (few intuitions)

Using duality theory

Wi (o, B) = leﬂﬁ) Exvalf(x)] — Ey~plf(y)]-

Let errors(f) = Ex,c)~ps[€(c, f(x))], errors(f) = Ex,c)~pt[€(c, f(x))] and
Fre=A{f: X — C,-f(-) €Lip.}.
Take
> Best error on target f* € argmingcx, , error¢(f).
> Best error on source f; € argmins ., , errors(f).

Then
0 < errors(f;) — error,(f*) < 2L - W4(P*, PY).

Conclusion if P%, Pt are closed in OT then perf should be good.

Deep domain adaptation Damodaran et al. 2018
Let Pf = n% Jn;l 5(,(];),&’()(})) and P° = n% 27;1 6(xf,cf) Solve

mfin Wy (P2, PT).
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