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Three aspects

of optimal transport

Transporting with optimal transport
» |earn to map between distributions.

» Estimate a smooth mapping from discrete
distributions.

» Applications in domain adaptation.
Divergence between histograms

» Use the ground metric to encode complex
relations between the bins of histograms for
data fitting.

» OT losses are non-parametric divergences
between non overlapping distributions.
» Used to train minimal Wasserstein estimators.
Divergence between graphs
» Modeling of structured data and graphs as
distribution.

» OT losses (Wass. or (F)GW) measure similarity
between distributions/objects.



Gromov-Wasserstein and extensions
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Inspired from Gabriel Peyré

GW for discrete distributions Memoli 2011
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» Distance between measures on different spaces w.r.t. isomorphism.
» OT plan that preserves the pairwise relationships between samples.
» Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.



Gromov-Wasserstein and extensions
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GW for discrete distributions
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» Distance between measures on different spaces w.r.t. isomorphism.
» OT plan that preserves the pairwise relationships between samples.
» Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.



Examples




Solving the Gromov Wasserstein optimization
problem

Optimization problem
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» Quadratic Program (Wasserstein is a linear program).
» Nonconvex, NP-hard, related to Quadratic Assignment Problem.

» Large problem and non convexity forbid standard QP solvers.

Optimization algorithms

» Local solution with conditional gradient
algorithm (Frank-Wolfe) Frank and Wolfe 1956.

» Each FW iteration requires solving an OT
problems.

» With entropic regularization, one can use mirror
descent Peyré, Cuturi, and Solomon 2016.



The Frank-Wolfe algorithm

Solving a constrained problem
e 1)
» (C is convex, f is differentiable.

» Starts with xg € C and for k > 0 iterates

sk <— argmin (Vf(xx),s) (LMO step)
seC

X1 = (1 — vi)xk + xSk

Convergence guaranties
If f is convex and x* is a minimizer then

2
f(Xk) — f(X*) S mM,

where M = sup ,¢po,1) F((1 —7)x +vs) — f(x) — v(VF(x),s — x).

x,s€C



The Frank-Wolfe algorithm for GW

Finding a local solution to the GW problem

pmin S G K) = Gl PP Py = (LG, G) @ P, P) = F(P)
ikl

> U(a, b) is convex, f is differentiable.
> 4D-tensor L(Ci, &) = (|Gi(i, k) — G, N)IP) -
> If Lisatensor L@ P = (3, L,'jk,Pk/)U.
> Starts with Py € U(a, b) and for k > 0 iterates
Gk = 2L( G, ) ® Py (gradient of loss)

Sk + argmin (G, S) (Linear OT problem)
SeU(a,b)

Piy1 = (1 — k) Pi + 7k Sk

» Can be computed in O(n?m + m?n) with p = 2.



Applications of (F)GW

A tool for graphs

( Summarization \(  Graph representation learning

( Classification, regression




Applications of (F)GW

Barycenter/averaging of labeled graphs Vayer et al. 2018

Noiseless graph Noisy graphs samples
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Shape matching between surfaces Solomon et al. 2016; Thual
et al. 2022
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Applications of (F)GW

Barycenter/averaging of labeled graphs Vayer et al. 2018
Noiseless graph Noisy graphs samples Barycenter
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Shape matching between surfaces Solomon et al. 2016; Thual
et al. 2022

Training (cross-validated grid-search) Test Baseline correlation Aligned correlation

- 300+ Source Target Source contrast k Source contrast k Actual
training contrasts subject s subject t mapped on target mesh  target contrast k



FGW for a pooling layer in GNN

‘ TFGW layer
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Template based FGW layer (TFGW) Vincent-Cuaz et al. 2022

» Principle: represent a graph through its distances to learned templates.
» Learnable parameters are illustrated in red above.
» New end-to-end GNN models for graph-level tasks.

> Sate-of-the-art (still!) on graph classification (1x#1, 3x#2 on
paperwithcode).
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