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About this course

Generalities
I About us: three researchers in machine learning/computer science.

I Course about the computational aspects of optimal transport and
its applications.

I Three practical labs (Python).

I All details of the course here https://mathurinm.github.io/otml/.

Evaluation
I 50 % homeworks (6 homeworks: 4 small/ 2 longer).

I 50 % one project: paper presentation and extension of a selected
research article and the associated code applied on real data.

I Bonus points: scribing (one per session, max 2 per person).

https://mathurinm.github.io/otml/
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A brief history

The natural geometry of probability measures

Figalli

Fields '10 Fields '18



The origins of optimal transport

Problem Monge 1781

I How to move dirt from one place (déblais) to another (remblais) while
minimizing the effort ?

I Condorcet about Monge 1781: “Ainsi, l’on voit dans les Sciences,
tantôt des théories brillantes, mais longtemps inutiles, devenir tout à
coup le fondement des applications les plus importantes, et tantôt des
applications très simples en apparence, faire nâıtre l’idée de théories
abstraites dont on n’avait pas encore le besoin, diriger vers les théories
des travaux des Géomètres, et leur ouvrir une carrière nouvelle.”
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Some applications

I Reconstruction of the early universe Levy, Mohayaee, and
von-Hausegger 2021

I Fluid dynamics Lévy 2022

I Cells analysis Bunne et al. 2024

I Computer graphics, computer vision Bonneel and Digne 2023

I And machine learning !
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Some applications

N. Bonneel and J. Digne / A survey of Optimal Transport for Computer Graphics and Computer Vision

Figure 9: A path in texture space interpolating between 26 different textures [MZD05]. After spatial alignment, textures are blended after
matching steerable pyramid sub-bands 1-d histograms [HB95] to their 1-d Wasserstein barycenters.

goal to recover details lost by the TV term by matching a distribution
of features to a prior distribution. Gazdieva et al. perform super-
resolution by learning an approximate optimal transport map from a
set of low resolution images to a set of (unpaired) high resolution
images [GRK⇤22].

5. Applications in rendering

5.1. Image stippling and sampling

Semi-discrete optimal transport provides a way to measure the dis-
tance between a set of Diracs and a density. As such, it easily found
its place for problems related to the approximation of a density with
a set of Diracs, that is, the energy optimization problem consist-
ing in minimizing the optimal transport distance between a density
and a sum of Diracs. This approach finds applications for two re-
lated problems. First, that of stippling an image, for instance in the
context of artistic image stylization or for dithering an image in
the context of printing grayscale (or color) images with black (or
CMYK) ink droplets. Second, that of sampling a density (most often
the uniform distribution on a unit hypercube domain) for Monte
Carlo integration, and in particular for physically-based rendering.
While the first application mainly looks for visually pleasing point
distributions, the second application is more interested in reducing
the error or variance in integral estimators. Optimal transport offers
benefits for both, as it produces interesting blue noise properties [dG-
BOD12, PSC⇤15].

The general idea behind these approaches is to initialize with a
random point set, and to iterate the computation of a semi-discrete
optimal transport computation step between the current point set
and a density (uniform or not), and a centering step that moves each
sample towards or at the location of the centroid of its power cell, in
a spirit similar to Lloyd’s algorithm [Llo82].

Stippling an image has been proposed as an application for several
semi-discrete approaches [XLC⇤16, dGBOD12] and state-of-the-
art results were obtained by the “BNOT” approach [dGBOD12]
(Fig. 10, left, only recently outperformed by a non optimal transport
based approach [ARW22]). A different, much faster but approxi-
mate, solver on 2-d grids has been proposed [NG18] and allows

to generate optimal transport stippling patterns visually similar to
that of de Goes et al. [dGBOD12]. Qin et al. instead uses entropy-
regularized optimal transport for sampling multiple classes (e.g.,
for color stippling), but also to sample meshes [QCHC17]. Their
algorithm should be general but is demonstrated in two dimensions
(or on surfaces embedded in 3-d). A sliced approach also allows for
multi-class color stippling [SGSS22]. An interesting generalization
relates to the optimal transport approximation of a density by other
non punctual measures [MM99], such as a single (long) continuous
curve [LdGKW19] (Fig. 10, right).

Sampling for rendering involves different constraints. While im-
age stippling usually restricts the problem to the approximation
of non-uniform 2-d densities, sampling for rendering generally re-
quires higher-dimensional densities, albeit generally uniform (they
are usually non-linearly transformed to match the desired distri-
bution for importance sampling afterwards). This adds difficulties
as the semi-discrete optimal transport problem is much easier in
the low-dimensional setting. Even in the case of 2-d or 3-d integra-
tion problems, semi-discrete optimal transport sampling has shown
benefits in term of integration error because the resulting point
distribution exhibits blue noise properties [PSC⇤15]. In the higher
dimensional setting (up to 20-d), a sliced approach has notably been
proposed for physically-based rendering applications [PBC⇤20] by
enforcing blue noise properties both in the high-dimensional space
and in its lower dimensional projections. This approach also works
for the task of multi-class blue noise sampling. Sliced multi-class
sampling has also been proposed by Salaün et al. [SGSS22] with a
custom energy that tends to produce blue noise spatial error distri-
bution in the image plane, by producing one point set per pixel such
that neighboring pixel samples are well interleaved in a blue noise
fashion.

5.2. Reflectance manipulation

Displacement interpolation can be used to obtain intermediate Bidi-
rectional Reflectance Distribution Functions (BRDFs) between two
input BRDFs. While for parameterized BRDF models, it is often
more intuitive to directly interpolate BRDF parameters, this is not
the case for BRDFs that are captured by gonioreflectometers and

© 2023 The Authors.
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Distributions are everywhere

Distributions are everywhere in machine learning

I Images, vision, graphics, Time series, text, genes, proteins.

I Many datum and datasets can be seen as distributions.

I Important questions:
I How to compare distributions?
I How to use the geometry of distributions?

I Optimal transport provides many tools that can answer those questions.
Illustration from the slides of Gabriel Peyré.
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Discrete distributions: Empirical vs Histogram

Discrete measure: α =
n∑

i=1

aiδxi , xi ∈ Ω,
n∑

i=1

ai = 1

Lagrangian (point clouds)

xi

I Constant weight: ai = 1
n

I Quotient space: Ωn, Σn

Eulerian (histograms)

I Fixed positions xi e.g. grid

I Convex polytope Σn

(simplex):
{(ai )i ≥ 0;

∑
i ai = 1}
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Optimal transport between discrete distributions

Distributions

Source 
Target 

Matrix C OT matrix with samples

A matching problem
When α = 1

n

∑n
i=1 δxi and β = 1

n

∑n
j=1 δyj

min
σ∈Perm(n)

n∑
i=1

Ci,σ(i)

where C is a cost matrix with Ci,j = c(xi , yj).



Optimal transport between discrete distributions

Distributions

Source 
Target 

Matrix C OT matrix 

Kantorovitch formulation : OT Linear Program
When α =

∑n
i=1 aiδxi and β =

∑m
j=1 bjδyj

min
P∈U(a,b)

〈P,C〉F =
∑
i,j

Pi,jCi,j


where C is a cost matrix with Ci,j = c(xi , yj) and

U(a, b) =
{
P ∈ Rn×m

+ | P1m = a,PT1n = b
}

I (n = m) Solving OT with network simplex is O(n3 log(n)).
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Wasserstein distance

Wasserstein distance
Distance between two arbitrary prob. distributions α ∈ P(Ω) and β ∈ P(Ω)

Wp(α, β) =

(
min

π∈U(α,β)

∫
Ω×Ω

‖x− y‖pdπ(x, y)

)1/p

=
(
E(x,y)∼π[‖x− y‖p]

)1/p

I (P(Ω),Wp) is a metric space.

I Works for continuous and discrete distributions (histograms, empirical).
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Some properties of optimal couplings

The Monge-Mather shortening principle
Let

supp(P) = {(i , j) ∈ [n]× [m] : Pij > 0} . (1)

If P is an optimal coupling and c(x, y) = ‖x− y‖, then for any
(i1, j1), (i2, j2) ∈ supp(P)2,

[xi1 , yj1 ] and [xi2 , yj2 ] do not cross, except maybe at their endpoints .

I Monge 1781 “Lorsque le transport
du deblai se fait de manière que la
somme des produits des molécules
par l’espace parcouru est un
minimum, les routes de deux points
quelconques A & B, ne doivent plus
se couper entre leurs extrémités, car
la somme Ab + Ba des routes qui se
coupent est toujours plus grande que
la somme Aa + Bb de celles qui ne
se coupent pas.”

The main theorem of OT: cyclical monotonicty
A coupling P ∈ U(a,b) is optimal if and only if for any
N ∈ N∗, (i1, j1), · · · , (iN , jN) ∈ supp(P)N and permutation σ ∈ Perm(N),

N∑
k=1

Cik ,jk ≤
N∑

k=1

Cik ,jσ(k)
. (2)
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Dual OT problem

The OT problem
min

P∈U(a,b)
〈P,C〉 , (Primal)

admits the dual formulation

max
f∈Rn,g∈Rm

∀(i,j)∈[n]×[m],fi+gj≤Ci,j

〈f, a〉+ 〈g,b〉 . (Dual)

I If P? is a solution of (Primal) and (f?, g?) is a solution of (Dual) then
〈P?,C〉 = 〈f?, a〉+ 〈g?,b〉

I Also for any (i , j) ∈ supp(P?), f ?i + g?j = Ci,j .
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Maximal coupling and total variation

A simple special case

I When n = m and α =
∑n

i=1 aiδxi and β =
∑n

j=1 bjδyj .

I Cost Ci,j = 1− δi (j) =

{
0 if i = j

1 otherwise
.

I One optimal coupling is the “maximal coupling”

Pii = min(ai , bi ) and i 6= j ,Pij =
(ai −min(ai , bi ))(bj −min(aj , bj))

1−
∑

k min(ak , bk)
(4)

I Smallest OT cost is the total variation minP∈U(a,b)〈C,P〉 = 1
2‖a− b‖1.



Special case: 1D distribution2.6. Special Cases 31
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Figure 2.9: 1-D optimal couplings: each arrow xi æ yj indicates a nonzero Pi,j in the optimal
coupling. Top: empirical measures with same number of points (optimal matching). Bottom: generic
case. This corresponds to monotone rearrangements, if xi Æ xiÕ are such that Pi,j ”= 0,PiÕ,jÕ ”= 0, then
necessarily yj Æ yjÕ .

Remark 2.29 (Histogram equalization). One-dimensional optimal transport can be
used to perform histogram equalization, with applications to the normalization of
the palette of grayscale images, see Figure 2.10. In this case, one denotes (x̄i)i and
(ȳj)j the gray color levels (0 for black, 1 for white, and all values in between) of all
pixels of the two input images enumerated in a predefined order (i.e. columnwise).
Assuming the number of pixels in each image is the same and equal to n◊m, sorting
these color levels defines xi = x̄‡1(i) and yj = ȳ‡2(j) as in Remark 2.28, where
‡1,‡2 : {1, . . . , nm} æ {1, . . . , nm} are permutations, so that ‡

def.= ‡2 ¶ ‡≠1
1 is the

optimal assignment between the two discrete distributions. For image processing
applications, (ȳ‡(i))i defines the color values of an equalized version of x̄, whose
empirical distribution matches exactly the one of ȳ. The equalized version of that
image can be recovered by folding back that nm-dimensional vector as an image
of size n ◊ m. Also, t œ [0, 1] ‘æ (1 ≠ t)x̄i + tȳ‡(i) defines an interpolation between
the original image and the equalized one, whose empirical distribution of pixels is
the displacement interpolation (as defined in (7.7)) between those of the inputs.

Remark 2.30 (1-D case—Generic case). For a measure – on R, we introduce the
cumulative distribution function from R to æ [0, 1] defined as

’x œ R, C–(x) def.=
⁄ x

≠Œ
d–, (2.34)

and its pseudoinverse C≠1
– : [0, 1] æ R fi {≠Œ}

’ r œ [0, 1], C≠1
– (r) = min

x
{x œ R fi {≠Œ} : C–(x) Ø r} . (2.35)

That function is also called the generalized quantile function of –. For any p Ø 1,

A important special case
When xi , yj ∈ R and c(x , y) = h(x − y) where h is convex.

I Example h(x − y) = |x − y |2.

I If x1 ≤ x2 and y1 ≤ y2, we can check that

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1) (5)

I Optimal plan respects the ordering of the elements.

I Wery simple algorithm to compute the transport in
O(max{n,m} log(max{n,m})), by sorting both xi and yj .



Special case: 1D distribution

The north-west corner rule
Initialize a = a,b = b, and (i , j) = (1, 1).

While i ≤ n, j ≤ m do:

I Send as much mass possible from i to j : Pij = min{ai , bj}.
I Adjust marginals ai ← ai − Pij , bj ← bj − Pij .

I If ai = 0 (marginal is saturated) then i ← i + 1.

I Si bj = 0 (marginal is saturated) then j ← j + 1.

Return P.

This algorithm runs in O(n + m) operations.
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Special case: 1D distribution

Monge matrices
A matrix C ∈ Rn×m is a Monge matrix if

∀(i , j) ∈ [n]× [m],Ci,j + Ci+1,j+1 ≤ Ci+1,j + Ci,j+1 (6)

I When x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ ym then C =
(
|xi − yj |2

)
i,j

is a Monge

matrix.

I More generally, C = (h(xi − yj))i,j with h convex.

I It is equivalent to

∀1 ≤ i < r ≤ n, 1 ≤ j < s ≤ m, Ci,j + Cr ,s ≤ Ci,s + Cr ,j (7)

Main result
If C is a Monge matrix the north-west corner rule produces an optimal
coupling.

I Corollary: in 1D you can solve OT in O(max{n,m} log(max{n,m})).
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