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1 Entropic regularization of optimal transport

References: Peyré et al. (2019, Chap. 4).

Definition 1.1 (Entropy). The entropy of a positive vector x ∈ Rd
+ is:

H(x) = −
d∑

i=1

xi log(xi) (1.1)

with the convention 0 log 0 = 0. It extends to matrices by summing over both indices i
and j: H(P ) = −

∑
i,j Pij log(Pij).

The Hessian of the entropy is diag(−1/xi) so the entropy is strictly concave. In 1D
on [0, 1] it looks roughly like a concave parabola, as shown on Figure 1, but with infinite
slope at 0.

The negative entropy is simply minus the entropy. It is a negative quantity, and
strictly convex.

Exercise 1.1. Show that the element of the simplex that minimizes the negative entropy
(equivalently, that maximizes the entropy) is the constant vector (1/n, . . . , 1/n).

Definition 1.2. The entropic-regularized optimal transport problem (EOT) is:

min
P≥0

⟨C,P ⟩+ ε
∑
ij

Pij(log(Pij − 1) s.t. P1 = a, P⊤1 = b (1.2)
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Figure 1: the entropy

Since the negative entropy is strictly convex, the solution of EOT is unique. Note that
the −1 in the entropy is here for convenience and can be removed without affecting the
solution, since the sum of entries of P is constant for any feasible P .

Proposition 1.3. When ε goes to 0 the solution P ∗ of the entropic problem converges to
a solution of the Kantorovich problem (which corresponds to ε = 0). If there are multiple
solutions to the Kantorovich problem, it converges to the one that has maximal entropy.

Note that this result is not true for general optimization problems: argmin and limit
do not commute.

Proof. Take a sequence of positive regularization strength εℓ going to 0, with associated
EOT solutions Pℓ. Since the constraint set is the same for all Pℓ, and that it is closed and
bounded, we can extract a converging subsequence (say towards P∞) that we rename Pℓ

for convenience. Let P ∗ be a solution of the Kantorovich problem. Then, by optimality
of P ∗ for the Kantorovich problem, since Pℓ is feasible for it too,

⟨C,P∗⟩ ≤ ⟨C,Pℓ⟩ (1.3)

On the other hand, since P ∗ is feasible for EOT with ε = εℓ, by optimality of Pℓ for this
problem,

⟨C,Pℓ⟩ − εℓH(Pℓ) ≤ ⟨C,P ∗⟩ − εℓH(P ∗) (1.4)

Combining the two we get:

0 ≤ ⟨C,Pℓ⟩ − ⟨C,P ∗⟩ ≤ εℓ(H(Pℓ)−H(P ∗)) (1.5)

Since (Pℓ) is bounded (the feasible set is the same for all problem, and it is bounded),
so is H(Pℓ); letting ℓ to infinity we must have ⟨C,P∞⟩ = ⟨C,P ∗⟩, which shows that P∞
is a solution of the Kantorovich problem (as it is feasible).

Exercise 1.2. Show that when ε → ∞, the solution of EOT goes to the feasible point
that has maximal entropy. Show that this point is ab⊤.

Definition 1.4. The Gibbs kernel associated to the EOT problem is K = exp(−C
ε
), where

the exponential acts entrywise. It is thus a matrix with strictly positive entries.
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Definition 1.5. The Kullback-Leibler divergence between two matrices P,Q ∈ Rn×m
+ (so,

with positive entries) is:

KL(P,Q) ≜
n∑

i=1

m∑
j=1

Pij log
Pij

Qij

− Pij +Qij (1.6)

Proposition 1.6. The KL divergence is the Bregman divergence associated to the negative
entropy. It is thus strictly convex in its first variable.

Proposition 1.7 (EOT as Bregman projection). The solution of EOT is also the solution
of:

argmin
P

KL(P,K) s.t. P ≥ 0, P1 = a, P⊤1 = b (1.7)

with K the Gibbs kernel K = exp(−C/ε).

This means that solving EOT is the same as projecting the Gibbs kernel onto the fea-
sible set, in the sense of the KL divergence (and not, as in the usual Euclidean projection,
in the sense of 1

2
∥ · − · ∥2).

Proposition 1.8. The dual of EOT is the following unconstrained problem:

max
f,g

⟨a, f⟩+ ⟨b, g⟩ − ε
∑
ij

exp

(
fi + gj − Cij

ε

)
(1.8)

We see that as ε → 0, the values for which fi + gj > Cij are more and more penalized,
eventually leading to a hard constraint for ε = 0.

In addition, for any solution f ∗, g∗ to the dual, the primal solution P ∗ satisfies:

P ∗
ij = exp

(
f ∗
i + g∗j − Cij

ε

)
(1.9)

One of the strong benefits of EOT is that its dual is unconstrained, so when solving it
one does not have to enforce constraints such as fi+gj ≤ Cij, which are nearly impossible
to apply in the continuous case.

Exercise 1.3. Show that it (f ∗, g∗) is a solution to the dual of EOT, so is (f ∗+ δ1n, g
∗−

δ1m) for any value of δ.

Fun fact: show that if a and b have entries all smaller than 1, then any solution
(f ∗, g∗) of the dual problem must satisfy f ∗

i + g∗j ≤ Cij – and this, even though the
constraint is not enforced in a hard way, unlike in unregularized OT.

Definition 1.9. Let M ∈ Rn×m
++ , a ∈ Rn

++, and b ∈ Rm
++. The matrix scaling problem is

to find vectors u, v ∈ Rn
++ × Rm

++ such that

diag(u)M diag(v)1 = a (1.10)

(diag(u)M diag(v))⊤1 = b (1.11)

It corresponds to multiplying rows and columns of M by scalars so that the rows end up
summing to a and the columns end up summing to b.
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Exercise 1.4. Show that if u, v is a solution of the matrix scaling problem, so is (u/λ, λv)
for any λ > 0.

Proposition 1.10. The matrix scaling problem with M = K the Gibbs kernel is equiva-
lent to the dual of EOT: if (u∗, v∗) solves the matrix scaling problem, then it is equal to
(exp(f ∗/ε), exp(g∗/ε)) where (f ∗, g∗) solves the dual of EOT (and vice versa, any solution
of the dual can be mapped to a solution of the matrix scaling problem).

How do the two types of invariance (by addition-subtraction for f, g, by multiplica-
tion/division for (u, v)) relate to this?

Definition 1.11. The Sinkhorn algorithm starts from a strictly positive v0 and iterates:

uℓ+1 = a/Kvℓ (1.12)

vℓ+1 = b/K⊤uℓ+1 (1.13)

where division is meant pointwise.

Sinkhorn’s algorithm has many interpretation. The easiest one if the following:

• for a fixed v, the choice of u that makes diag(u)K diag(v) satisfy diag(u)K diag(v)1 =
a is a/Kv (this is because K diag(v)1 = Kv).

• for a fixed u, the choice of v that makes diag(u)K diag(v) satisfy (diag(u)M diag(v))⊤1 =
b is b/K⊤u.

So, Sinkhorn alternatively modifies u and v to satisfy the first and the second constraints.
Surprisingly, this works: Sinkhorn’s algorithm converges to a solution of the matrix

scaling problem, and hence can be used to solve the dual of EOT.

Proposition 1.12. If we define P ℓ = diag(uℓ)K diag(vℓ), then the sequence P ℓ corre-
sponds to alternated Bregman projection (in the KL sense) onto the constraint set.

Alternating projections usually do not converge, but when the constraint sets are
affine, it does.

Proposition 1.13. If one defines u = exp(f/ε) and v = exp(g/ε), then performing
iterations of Sinkhorn is the same as performing alternate maximization (in f and in g)
on the dual of EOT.

1.1 Convergence of the Sinkhorn algorithm

To derive convergence results easily we’ll work in a different metric

Definition 1.14. The Hilbert projective metric on Rd
++ is:

dH(u, u) ≜ logmax
i,j

uiu
′
j

uju′
i

(1.14)

Interpretation: it is a distance on the cone Rd
++ quotiented by the equivalence relation

u ∼ u′ ⇔ u = ru′, r > 0.
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This metric is useful because it “does not see” variations in scaling: dH(u, λu
′) =

dH(u, u
′); those variations in scaling in u and v are precisely the one that makes the

solutions to the matrix scaling problem not unique.

Exercise 1.5. Show that the Hilbert projective metric satisfies the triangular inequality
dH(u, u

′′) ≤ dH(u, u
′) + dH(u

′, u′′).

Proposition 1.15. Let M ∈ Rn×m
++ . Then M is a contraction in the Hilbert projective

metric: for any positive v, v′,

dH(Mv,Mv′) ≤ λ(M)dH(v, v
′) (1.15)

where λ(K) ≜
√

η(M)−1√
η(M)+1

< 1 and η(M) ≜ maxi,j,k,l
MikMkl

MjkMil
≥ 1 is some sort of “condition-

ing” of K.

Proposition 1.16. Consider the iterates of Sinkhorn algorithm uℓ, vℓ, and define P ℓ =
diag(uℓ)K diag(vℓ) . Then

1. uℓ, vℓ → u∗, v∗ a solution of the matrix scaling problem associated to K, and so
P ℓ converges to the solution of EOT. The convergence is at a speed dH(u

ℓ, u∗) =
O(λ(K)2ℓ), same for v.

2. dH(u
ℓ, u∗) ≤ dH(P ℓ1,a)

1−λ(K)2
and similarly for v and b.

3. ∥P ℓ − P ∗∥∞ ≤ dH(u
ℓ, u∗) + dH(v

ℓ, v∗).

2 The Sinkhorn divergence

One the main uses of OT is to define distances between probability distribution. Consider
two discrete probability distributions α =

∑n
i=1 aiδxi

, β =
∑m

j=1 bjδyj , and the cost matrix
C = (∥xi − yj∥)ij. The 1-Wasserstein distance between α and β is defined as the minimal
transport cost:

min
P≥0
P1=a
P⊤1=b

⟨C,P ⟩ . (2.1)

Then, one can show that W (·, ·) is a metric between probability distributions: it satisfies
the triangular inequality, is non-negative and vanishes if and only if α = β.

Since entropic optimal transport is easier to solve than standard OT, one may try to
define a similar distance as the minimum value of the EOT problem:

min
P≥0
P1=a
P⊤1=b

⟨C,P ⟩ − ε
∑
ij

Pij(log(Pij)− 1) . (2.2)

Unfortunately, for ε > 0, this does not satisfy elementary properties of a distance. In
particular, due to the fact that the entropy is always strictly positive, the minimal value
in (2.2) is strictly positive when α = β.

The goal of this section is to show how to construct a meaningful way to compare
probability distributions using EOT.

5



2.1 Renormalizing the regularizer

Feydy et al. (2019) introduced the so-called Sinkhorn divergence: a well-behaved object
when one wants to use entropic regularization to compare probability distributions.

First, observe that the entropic regularized problem (2.2) is in fact equivalent, up to
cosntant terms, to1

OTε(α, β) ≜ min
P≥0
P1=a
P⊤1=b

⟨C,P ⟩+ εKL(P, ab⊤) . (2.3)

We will work with this formulation, which is more convenient when studying the behavior
of the minimum as ε → +∞.

As an exercise you can check that (2.3) admits the dual formulation

OTε(α, β) = max
f,g

⟨a, f⟩+ ⟨b, g⟩ − ε
∑
ij

(
exp

(
fi + gj − Cij

ε

)
− 1

)
aibj . (2.4)

Then the definition follows.

Definition 2.1 (Sinkhorn divergence). Let α, β be two probability distributions. The
Sinkhorn divergence between α, β is the quantity

Sε(α, β) = OTε(α, β)−
1

2
(OTε(α, α) + OTε(β, β)) . (2.5)

This simple renormalization first implies that Sε(α, α) = 0, but it is now not so clear
that this quantity remains non-negative. To prove it, we need to define the notion of
kernel, an object used to measure similarity between objects.

Definition 2.2 (Kernel). A function κ : X × X → R is a kernel if for any n ∈ N
and (x1, · · · , xn) ∈ Xn and (c1, · · · , cn) ∈ Rn we have that

∑
ij κ(xi, xj)cicj ≥ 0. In

other words, if for any n and (x1, · · · , xn) ∈ Xn the matrix K = (κ(xi, xj))ij is positive
semi-definite.

A simple example is the Gaussian kernel κ(x, y) = exp(−∥x− y∥22/ε) which is indeed
a kernel.

2.2 Some properties of the Sinkhorn divergence

The following results proved in Feydy et al. (2019) shows that under a reasonable assump-
tion on the cost, the Sinkhorn divergence is a “good object” for defining similarities.

1Indeed KL(P, ab⊤) =
∑

ij Pij log(Pij/aibj) − aibj + Pij =
∑

ij Pij log(Pij) −
∑

ij Pij log(ai) −∑
ij Pij log(bj) = −H(P )−

∑
i ai log(ai)−

∑
j bj log(bj) = −H(P ) +H(a) +H(b). So the two objectives

only differ by a constant, hence have the same minimizers.
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Proposition 2.3. Suppose that the cost c is symmetric, i.e., c(x, y) = c(y, x), and that
for any ε > 0, κ(x, y) = exp(−c(x, y)/ε) defines a kernel. Then Sε(·, ·) is symmetric,
non-negative and satisfies Sε(α, α) = 0 for any probability distribution α. In other words,
Sε is a divergence2 between probability distributions.

This hypothesis on c is quite natural for many cost functions, for example when
c(x, y) = ∥x − y∥22 since κ(x, y) = exp(−∥x − y∥22/ε) is a Gaussian kernel. We will
prove this proposition by using the following result.

Proposition 2.4. Let (f ⋆, g⋆) be optimal dual variables for (2.4), then OTε(α, β) =
⟨a, f ⋆⟩ + ⟨b, g⋆⟩. Moreover, when α = β and when the cost c is symmetric, i.e. c(x, y) =
c(y, x), there is a pair (f ⋆, g⋆) of optimal dual variables of problem (2.4) with f ⋆ = g⋆.

Proof. We note S(f, g) = ⟨a, f⟩+⟨g, b⟩−ε
∑

ij

(
exp(

fi+gj−Cij

ε
)− 1

)
aibj the dual objective.

Since the problem is concave we have that ∇fS(f
⋆, g⋆) = 0,∇gS(f

⋆, g⋆) = 0. These
conditions implies that (do the computation)

∀j,
∑
i

exp

(
f ⋆
i + g⋆j − Cij

ε

)
ai = 1

∀i,
∑
j

exp

(
f ⋆
i + g⋆j − Cij

ε

)
bj = 1

(2.6)

In other words by multiplying the first equation by bj and summing all the terms we

get that
∑

ij exp(
f⋆
i +g⋆j−Cij

ε
)aibj = 1. Thus −ε

∑
ij

(
exp(

f⋆
i +g⋆j−Cij

ε
)− 1

)
aibj = 0 which

concludes the first point of the proof. For the second point consider the problem (2.4)
with α = β =

∑n
i=1 aiδxi

and suppose the cost is symmetric. In this case

S(f, g) = ⟨a, f⟩+ ⟨a, g⟩ − ε
∑
ij

(
exp(

fi + gj − Cij

ε
)− 1

)
aiaj . (2.7)

Since C is symmetric we can easily check that S(f, g) = S(g, f). We will show that this im-
plies maxf,g S(f, g) = maxf S(f, f) thus there will be optimal dual variables (f ⋆, g⋆) with
f ⋆ = g⋆ that solve the problem. To see this we first have maxf,g S(f, g) ≥ maxf S(f, f).
Now since the dual problem is (jointly) concave, i.e. (f, g) → S(f, g) is concave, we have
that

S

(
(f, g)

2
+

(g, f)

2

)
≥ 1

2
(S(f, g) + S(g, f)) = S(f, g) . (2.8)

But S( (f,g)
2

+ (g,f)
2

) = S(f+g
2
, f+g

2
) ≤ maxf S(f, f). Thus maxf S(f, f) ≥ maxf,g S(f, g)

which concludes.

We can use this result to prove Proposition 2.3.

2A divergence D is a function of two variables that satisfies ∀x,D(x, x) = 0,∀(x, y), D(x, y) ≥ 0.
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Proof of Proposition 2.3. We note fα ∈ Rn an optimal dual variable for OTε(α, α) and
gβ ∈ Rm for OTε(β, β) (which exist since we can consider optimal dual variables that are
equal from Proposition 2.4). Now the couple (fα, gβ) is admissible for OTε(α, β). Thus

OTε(α, β) ≥ ⟨a, fα⟩+ ⟨gβ, b⟩ − ε
∑
ij

(
exp

(
fα
i + gβj − c(xi, yj)

ε

)
− 1

)
aibj . (2.9)

Using Proposition 2.4 we also have OTε(α, α) = ⟨fα, a⟩+ ⟨fα, a⟩ = 2⟨fα, a⟩ (same for β).
Hence

Sε(α, β) = OTε(α, β)−
1

2
OTε(α, α)−

1

2
OTε(β, β)

= OTε(α, β)− ⟨fα, a⟩ − ⟨gβ, b⟩

≥ −ε
∑
ij

(
exp(

fα
i + gβj − c(xi, yj)

ε
)− 1

)
aibj

= ε(1− u⊤Kxyv) ,

(2.10)

where we defined ui = ai exp(f
α
i /ε), vj = exp(gβj /ε) and Kxy = (exp(−c(xi, yj)/ε))ij. We

note also Kyx = (exp(−c(yj, xi)/ε))ji. Now using Proposition 2.4 we have also, for the
problems related to OTε(α, α) and OTε(β, β),∑

ii′

exp(
fα
i + fα

i′ − c(xi, xi′)

ε
)aiai′ = 1 =⇒ u⊤Kxxu = 1

∑
jj′

exp(
gβj + gβj′ − c(yj, yj′)

ε
)bjbj′ = 1 =⇒ v⊤Kyyv = 1 ,

(2.11)

where Kxx = (exp(−c(xi, xi′)/ε))ii′ , Kyy = (exp(−c(yj, yj′)/ε))jj′ . Thus

Sε(α, β) ≥ ε(1− u⊤Kxyv) =
ε

2
(1 + 1− 2u⊤Kxyv)

=
ε

2
(u⊤Kxxu+ v⊤Kyyv − 2u⊤Kxyv)

=
(
u v

)⊤(Kxx Kxy

Kyx Kyy

)(
u
v

)
.

(2.12)

To conclude it suffices to use that κ(x, y) = exp(−c(x, y)/ε) so that K =

(
Kxx Kxy

Kyx Kyy

)
=

(κ(zi, zj))ij where (z1, · · · , zn, zn+1, · · · zn+m) = (x1, · · · , xn, y1, · · · , ym). Since κ is a ker-

nel the matrix K is PSD and thus
(
u v

)⊤(Kxx Kxy

Kyx Kyy

)(
u
v

)
≥ 0.

Last, but not least, the Sinkhorn divergence has very interesting asymptotic properties
as detailed below.
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Proposition 2.5. Let c be a symmetric cost. The Sinkhorn divergence interpolates
between the unregularized OT distance and the so-called Maximum Mean Discrepancy
(MMD)

Sε(α, β) →
ε→0

min
P≥0

P1=a, P⊤1=b

⟨C,P ⟩

Sε(α, β) →
ε→+∞

1

2

(
−
∑
ii′

c(xi, xi′)aiai′ −
∑
jj′

c(yj, yj′)bjbj′ + 2
∑
ij

c(xi, yj)aibj

) (2.13)

Under the hypothesis on c of Proposition 2.3 the complicated term when ε → +∞ is
non-negative and defines also a very useful distance between probability distributions.

We will prove only the convergence result, we leave the clean definition of the MMD
(and the fact that it is non-negative) for another time...

Proof. Consider (f ε, gε) optimal dual variables for the problem OTε(α, β), that is

OTε(α, β) = ⟨a, f ε⟩+ ⟨b, gε⟩ − ε
∑
ij

(
exp(

f ε
i + gεj − c(xi, yj)

ε
)− 1

)
aibj . (2.14)

As ε → +∞ we have exp(
fε
i +gεj−c(xi,yj)

ε
) = 1+

fε
i +gεj−c(xi,yj)

ε
+O( 1

ε2
) (everything is discrete

so the dual variables are uniformly bounded, independently of ε ). Thus

OTε(α, β) = ⟨a, f ε⟩+ ⟨b, gε⟩ − ε
∑
ij

(
f ε
i + gεj − c(xi, yj)

ε
+O

(
1

ε2

))
aibj

=
∑
ij

c(xi, yj)aibj +O

(
1

ε

)
.

(2.15)

Thus OTε(α, β) →ε→+∞
∑

ij c(xi, yj)aibj. In the same vein we have OTε(α, α) →ε→+∞∑
ii′ c(xi, xi′)aiai′ and OTε(β, β) →ε→+∞

∑
jj′ c(yj, yj′)bjbj′ hence the result. The setting

ε → 0 is clear.
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