ENS Lyon
2024/2025 Mathurin Massias, Titouan Vayer, Quentin Bertrand

HOMEWORK 1 : Basics of OT

You have three weeks to do this homework: it must be return by Wednesday, November 20.

e Send the homework to titouan.vayer@inria.fr, mathurin.massias@inria.fr and
quentin.bertrand@inria.fr with the header “Homework 1 Name 1”.

e For the maths send a scan by mail or give it by hand on 20th november.

- ExErcise 1: DuaL or OT. -

Let o = > | ai0x,;, 8 = ij:l b;dy, be two discrete probability measures. Let C = (¢(x;,y;))s; be
the cost matrix between the samples. Consider the OT problem

in (P,C). Primal
Per;}g_’bﬁ ,C) (Primal)

Using the KKT conditions, show that (Primal) admits the dual formulation

max (f,a) + (g,b). (Dual)
feR™, geR™
V(i,j)Elnlx[m],fi+g;<Ci,;

Deduce that
o if P* is a solution of (Primal) and (f*, g*) is a solution of (Dual) then (P*, C) = (f*,a) + (g*, b)

e for any (4, j) € supp(P*), f + gj = Ci; where supp(P*) = {(i,7) : Pj; > 0}.

- EXERCISE 2: BASICS OF THE POT LIBRARY. -

This second exercise aims at getting started with the POT library https://pythonot.github.io/ for
optimal transport. We will use jupyter notebook for all practical sessions. Some important points to
remember when working with Python:

import math # import a package

import numpy as np # import a package under an alias
from sklearn import linear_model # import a submodule

from os import mkdir # import a specific function

First install POT and the scikit-learn library. We will use the following data

from sklearn.datasets import make_blobs
offset = 0.5
seed = 42
centers = np.array([
fo, o],
[offset, O],
D
X, ¢ = make_blobs(n_samples=50, centers=centers, n_features=2,
random_state=seed, cluster_std=0.05, shuffle=False)
= X[c == 0] # source distribution
X[c == 1] # target distribution

]
o

page 1

mailto:titouan.vayer@inria.fr
mailto:mathurin.massias@inria.fr
mailto:quentin.bertrand@inria.fr
https://pythonot.github.io/

Compute two cost matrices between the samples: the first one should be (||x; — y;||2):; and the
second one (|x; — y;|[3);; (you can use the ot.dist function).

Compute the weights of each point in the distributions, we can take uniform weights for simplicity.

For each cost matrix calculate the optimal transport plan between the source distribution and the
target distribution. For this you can use the ot.emd function.

Plot the two optimal transport plans along with the source and target samples. You can use the
following code.

(v)

(vi) What is the value of the Wasserstein distance in these two cases ?

def plot2D_samples_mat(xs, xt, G, ax, thr=1e-8, *xkwargs):

"""Plot 2D samples and the corresponding coupling between them.

Parameters
xs : np.array (n_samples_source, 2)
The source points
xt : np.array (n_samples_target, 2)
The target points
G : np.array (n_samples_source, n_samples_target)
The coupling
ax : matplotlib.axes._axes.Axes
Axes object for the plot
thr : float, optional
Threshold parameter for showing an edge, by default 1e-8
kwargs: dictionary
Other arguments for the plot (color, alpha...)
nnn
if ('color' not in kwargs) and ('c' not in kwargs):
kwargs['color'] = 'k'
mx = G.max()
if 'alpha' in kwargs:
scale = kwargs['alpha']
del kwargs['alpha']
else:
scale = 1
for i in range(xs.shape[0]):
for j in range(xt.shape[0]):
if G[i, j] / mx > thr:
ax.plot([xs[i, 0], xt[j, 011,
[xs[i, 11, xt[j, 111,
alpha=G[i, j] / mx * scale, **kwargs)

What is the big difference between the two optimal plans ?

page 2

