
ENS Lyon
2024/2025 Mathurin Massias, Titouan Vayer, Quentin Bertrand

Homework 2 : The Auction algorithm

You have 3 weeks to do this homework: it must be returned by December 20th.

• You can do it by group of two.

• Send the homework to titouan.vayer@inria.fr, mathurin.massias@inria.fr and
quentin.bertrand@inria.fr with the header “Homework 1 Name 1 Name 2”. Please name
your file LASTNAME1_LASTNAME2_hw2.pdf where your replace LASTNAME by your
respective last names.

• For the maths send a scan by mail or give it by hand on December 19th.

- Exercise 1: Theory of the Auction algorithm (10 points). -

The auction algorithm solves the Monge assignment problem. To detail it, we consider N people and
N objects.

We assume that for each person i ∈ {1, · · · , N}, there is a certain gain aij associated with acquiring
object j ∈ {1, · · · , N}. This gain could represent an increase in the person’s happiness, as when buying a
delicious cake, or a mischievous gain tied to an increase in assets.

Since we live in a capitalist world, these people will be put in competition, and each one will have to
make a dishonest bid to acquire the objects (instead of simply negotiating). Our goal is to determine the
person/object assignment, which we will denote by σ : {1, · · · , N} → {1, · · · , N}.

We also want this assignment to be bijective, meaning that each person corresponds to a unique object.
Since we are not monsters, we will force each person to acquire one object, but we aim to find the pairing
that maximizes the total gain (i.e. the sum of the individual gains). To achieve this, we need to solve the
following optimization problem:

max
σ∈SN

N∑
i=1

aiσ(i) where SN is the set of all bijections from [[N ]]→ [[N ]] . (1)

(I) Explain why solving (1) is equivalent to solving the Monge assignment problem.

The basic idea of the auction algorithm is that all persons will iteratively try to agree on the right price
to pay to acquire object j, denoted pj . We will try to find the prices such that everyone is as satisfied as
possible with having purchased an object. We still need to define what it means to be “the most satisfied”.

Definition 1. Given an assignment σ and prices p = (p1, · · · , pN ), we say that a person i ∈ {1, · · · , N} is
happy when the net cost of the object σ(i) they purchase is the lowest possible among all objects. Formally,
this means that

aiσ(i) − pσ(i) = max
j∈{1,··· ,N}

aij − pj . (2)

If all the people are happy, we say that the pair of assignment/price (σ,p) is at equilibrium.

The definition above accurately reflects this idea because aij − pj is the net cost of object j for person
i (the gain they get from acquiring the object minus the price they pay for it). A fundamental result tells
us the following.

Theorem 1. If we find a pair (σ⋆,p⋆) at equilibrium, then σ⋆ solves (1) and p⋆ solves the dual problem
given by

min
p∈RN

N∑
j=1

pj +

N∑
i=1

max
j∈{1,··· ,N}

(aij − pj) . (3)

page 1

mailto:titouan.vayer@inria.fr
mailto:mathurin.massias@inria.fr
mailto:quentin.bertrand@inria.fr


(II) Prove Theorem 1. Do you have any economic interpretation of this result?

The goal of the auction algorithm is to find a pair at equilibrium so as to use Theorem 1 to solve the
Monge problem. We will first write a somewhat naive algorithm.

It proceeds in successive rounds. At the start of the algorithm, we choose an initial assignment and
prices (often set to zero). If all the people are happy (Def. 1), we stop, obviously.

Otherwise, at each round t ∈ N, a person who is not happy is selected – without requirements:
randomly, or the first unhappy, or any other choice. For this person i ∈ {1, . . . , N}, we find the object
ji ∈ {1, . . . , N} that makes them the happiest, i.e.

ji ∈ argmax
j∈{1,...,N}

aij − pj . (4)

Then, we proceed to exchange this object with the person i′ who originally had it: i′ and i swap their
objects.

Finally, and this is the crucial step, we will increase the price of object ji to make it less attractive.
Specifically, we will increase it minimally, under the constraint that person i would still choose it
after this increase, i.e. is still happy about their choice after the price increase. If we denote by
j2i ∈ argmax

j∈{1,...,N},j ̸=ji

aij − pj the second most attractive object for person i, then the new price of object ji

is given by
pji ← pji +

(
(aiji − pji)− (aij2i − pj2i )

)
︸ ︷︷ ︸

≥0

. (5)

The important remark is that by doing this, we ensure that the prices always increase, so all the happy
persons at step t remain happy in the next round t + 1 if they keep their object. We then iterate the
process.

Does this always work? Does the algorithm always terminate? The answer is no: it is possible that
the price does not change in a given round (when the second most attractive object has the same net cost
as the first). In this case, it can happen that multiple people fight indefinitely for the same small number
of objects without the gains changing.

The true Auction algorithm The main idea is to relax the problem a bit with an ε > 0, giving
ourselves a small margin. We will try to satisfy everyone to some extent. We adopt the following definition.

Definition 2 (ε-good pair). Let ε > 0. We say that a person i is approximately happy if

aiσ(i) − pσ(i) ≥ max
j∈{1,...,N}

{aij − pj} − ε . (6)

A pair (σ,p) is ε-good if everyone is approximately happy.

A direct remark is that if we have such a pair, then everyone is happy within ε and we recover the
previous definition with ε = 0. Moreover, we have the following result:

Proposition 1. Let (σ⋆,p⋆) be an ε-good pair. Then the permutation σ⋆ solves the Monge problem within
Nε, i.e.,

max
σ∈SN

N∑
i=1

aiσ(i) −Nε ≤
N∑
i=1

aiσ⋆(i) ≤ max
σ∈SN

N∑
i=1

aiσ(i) . (7)

Similarly, p⋆ solves the dual problem within Nε. Moreover if ∀(i, j) ∈ {1, . . . , N}2, aij ∈ N and ε < 1
N ,

then σ⋆ solves the Monge problem.

(III) Prove Proposition 1.

The key now is to construct an ε-good pair. The auction algorithm is almost identical to the previous
one, except that the prices of the objects will be increased by the same quantity as before plus ε.
Specifically, the algorithm starts with an initialization of (σ,p). If everyone is approximately happy, we
stop. Otherwise, as long as there is a person who is not approximately happy:

page 2



• We select a person i who is not approximately happy. Let’s say they are initially assigned to an
object o at the beginning of the round.

• We find the object that makes the person the happiest:

ji ∈ argmax
j∈{1,...,N}

aij − pj . (8)

We say that the object receives a bid.

• We proceed to exchange this object with the person who originally had it. More precisely, if this
person is i′, i.e., if σ−1(ji) = I at the beginning of the round, then we update σ(i) ← ji and
σ(i′)← o.

• We denote j2i ∈ argmax
j∈{1,...,N},j ̸=ji

aij − pj the second most attractive object for person i. We increase

the price of the object via

pji ← pji +
(
(aiji − pji)− (aij2i − pj2i ) + ε

)
︸ ︷︷ ︸

≥ε>0

. (9)

• We update the list of people who are not approximately happy by checking among all the people
who were not approximately happy if they still are after the change in gains.

We will now formally prove that we indeed find an ε-good solution. The goal is to prove the following
result.

Proposition 2. Let ∥A∥∞ = max(i,j)∈{1,...,N}2 |aij |. If p(0) is taken as a constant vector the auction
algorithm terminates in at most 2N(∥A∥∞/ε+ 1) iterations with an ε-good final pair. The algorithm has
a time complexity of O(N3∥A∥∞/ε).

Before proving this, we give some intuitions about why this proposition is true. The general idea is
that each object that receives a bid sees its price increase by at least ε. Eventually, its price becomes so
high that no one has an interest in bidding on this object. Thus, the algorithm terminates after a while
because all objects have a high price, and in this case, no one wants to change objects.

Also, it should be noted that a person becomes approximately happy immediately after acquiring an
object via a bid and remains so as long as they keep this object, since the prices of the other objects
can only increase during the algorithm. Moreover, we can prove by induction that from the moment an
object receives a bid for the first time, the person assigned to this object in each subsequent round is
approximately happy (note that this person may change).

Therefore, at the end of each round, the people associated with objects that have already received at
least one bid are approximately happy. Finally, knowing that all prices increase, we have two possibilities:
either the algorithm terminates with objects that have never received a bid but everyone is approximately
happy, or each object will receive at least one bid at some point, and since the people associated with
those objects are all approximately happy, the algorithm terminates. More formally, we have the following
results:

Lemma 1. Let (σ(t))t and (p(t))t be the sequences of assignments/gains during the algorithm, (S(t))t the
sequence of persons who are approximately happy, and (∆(t))t the sequence of objects that have received at
least one bid during the previous rounds (∆(0) = ∅).

1) (Prices increase) ∀t,∀j ∈ {1, . . . , N}, p
(t+1)
j ≥ p

(t)
j .

2) (The selected person becomes approximately happy) For a fixed round t, if person i is selected by
the algorithm, then i ∈ S(t+1).

3) (If a person is approximately happy and does not change objects, they remain approximately happy)
For a fixed round t, if i ∈ S(t) and for all t′ ≥ t, σ(t′)(i) = σ(t)(i), then for all t′ ≥ t, i ∈ S(t′).

4) (More and more people become approximately happy) The sequence (|S(t)|)t is increasing.

page 3



5) (Objects can only receive a limited number of bids as long as there is one that has never received a
bid) Suppose that all initial prices are equal, i.e., p(0) = cte, that we are at round t > 2(∥A∥∞/ε+1),
and that there exists j1 ∈ {1, . . . , N} with j1 ̸∈ ∆(t). Then any object j ̸= j1 cannot have received
more than 2(∥A∥∞/ε+ 1) bids.

6) (At the end of each round, the people associated with objects that have already received at least
one bid are approximately happy) At the end of round t, {i ∈ {1, . . . , N} : σ(t)(i) ∈ ∆(t)} ⊆ S(t).

7) (When all objects have been bid on at least once, the algorithm terminates) If at the end of round
t we have ∆(t) = {1, . . . , N}, then the algorithm terminates and all the people are approximately
happy.

(IV) Prove all the points of Lemma 1. The point 5) is the most difficult: you can prove it by contradiction
by checking that if an object j0 receives more than n ≥ 2(∥A∥∞/ε+ 1) bids while another object
does not have receive one bid then the last person who bid on j0 is not happy.

(V) Deduce Proposition 2 from Lemma 1.

- Exercise 2: Practice of the Auction algorithm (10 points). -

Implement the Auction algorithm in Python. The function should takes as input a matrix (aij)ij , an
ε > 0, initial prices p(0) and a certain number of iterations. It should return an ε-good pair. To see if the
solution is correct, compare with the POT library on synthetic data. You should obtain a matching that
has the same OT cost within ε.

page 4


