LAB 1 : Entropic regularization for optimal transport

- EXERCISE 1: CODING SINKHORN -

Let $\alpha = \sum_{i=1}^{n} a_i \delta_{\mathbf{x}_i}, \beta = \sum_{j=1}^{m} b_j \delta_{\mathbf{y}_j}$ be two discrete probability measures. Let $\mathbf{C} = (c(\mathbf{x}_i, \mathbf{y}_j))_{ij}$ be the cost matrix between the samples. Consider the entropic regularized OT problem

$$OT_{\varepsilon}(\alpha,\beta) = \min_{\mathbf{P} \in U(\mathbf{a},\mathbf{b})} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}), \qquad (1)$$

where $H(\mathbf{P}) = -\sum_{ij} P_{ij}(\log(P_{ij}) - 1)$ is the negative entropy.

- Q1. Code the Sinkhorn algorithm for solving (1). The function should take as input $\mathbf{a}, \mathbf{b}, \mathbf{C}$ a regularization parameter ε , a number of maximum iterations and a convergence criterion (below which the algorithm stops). It should output the optimal transport plan.
- Q2. Generate random Gaussian samples in dimension d = 2: $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathcal{N}(0, \sigma^2 I)$ and $\mathbf{y}_1, \dots, \mathbf{y}_m \sim \mathcal{N}(0.5, \sigma^2 I)$ with $\sigma = 0.05$, consider uniform weights $\mathbf{a} = \frac{1}{n} \mathbf{1}_n$, $\mathbf{b} = \frac{1}{m} \mathbf{1}_m$ and $c(\mathbf{x}_i, \mathbf{y}_j) = \|\mathbf{x}_i \mathbf{y}\|_2^2$. Compute the OT plan using the previous algorithm with varying $\varepsilon \in \{0.001, 0.01, 0.1, 1\}$ and the dual loss during the iteration (for only one ε). Vizualize the plan (for different ε) using the code below and compare with the unregularized problem.

Q3. Now compute the OT plan with $\varepsilon = 1e - 5$. What happens ? What can you suggest to overcome this problem ?

We define the logsum point of a vector \mathbf{z} as $\text{LSE}(\mathbf{z}) = \log(\sum_{i} \exp(z_i))$ and the softmin at level $\varepsilon > 0$ as softmin $\varepsilon \mathbf{z} = -\varepsilon \text{LSE}(-\mathbf{z}/\varepsilon)$.

- Q4. Show that for any $\alpha \in \mathbb{R}$ we have $LSE(\mathbf{z} + \alpha \mathbf{1}) = \alpha + LSE(\mathbf{z})$. Deduce that $softmin_{\varepsilon} \mathbf{z} = \alpha + softmin_{\varepsilon} \{\mathbf{z} \alpha \mathbf{1}\}$.
- Q5. What is the value of $\operatorname{softmin}_{\varepsilon} \mathbf{z}$ as ε goes to 0? Prove it. What is the problem when computing $\operatorname{softmin}_{\varepsilon} \mathbf{z}$ when ε is small ?
- Q6. Based on the previous answers code a stable implementation of softmin.
- Q7. Show that the iterations of Sinkhorn's algorithm are equivalent to choosing $\mathbf{g}^{(0)} \in \mathbb{R}^m$ and then iterating for $k \ge 1$

$$\forall i \in \llbracket n \rrbracket, \ f_i^{(k)} \leftarrow \varepsilon \log(a_i) + \operatorname{softmin}_{\varepsilon} \left(C_{ij} - g_j^{(k-1)} \right)_j,$$

$$\forall j \in \llbracket m \rrbracket, \ g_j^{(k)} \leftarrow \varepsilon \log(b_j) + \operatorname{softmin}_{\varepsilon} \left(C_{ij} - f_i^{(k)} \right)_i$$

$$k \leftarrow k + 1.$$

$$(2)$$

These iterations are called the log-domain Sinkhorn. Implement these iterations and show on the previous example that it is more stable. What is the main drawback ?

- Q8. Compare the previous implementations with the result of the POT library (you can use ot.sinkhorn).
- Q9. Generate data according to the following code and plot the corresponding points.

Q10. The previous dataset corresponds to one distribution α . Compute and plot the optimal transport plan corresponding to $OT_{\varepsilon}(\alpha, \alpha)$ for varying ε . How do you interpret the result ?