
ENS Lyon
2024/2025 Mathurin Massias, Titouan Vayer, Quentin Bertrand

Lab 1 : Entropic regularization for optimal transport

- Exercise 1: Coding Sinkhorn -

Let α =
∑n

i=1 aiδxi , β =
∑m

j=1 bjδyj be two discrete probability measures. Let C = (c(xi,yj))ij be
the cost matrix between the samples. Consider the entropic regularized OT problem

OTε(α, β) = min
P∈U(a,b)

⟨P,C⟩ − εH(P) , (1)

where H(P) = −
∑

ij Pij(log(Pij)− 1) is the negative entropy.

Q1. Code the Sinkhorn algorithm for solving (1). The function should take as input a,b,C a regularization
parameter ε, a number of maximum iterations and a convergence criterion (below which the algorithm
stops). It should output the optimal transport plan.

Q2. Generate random Gaussian samples in dimension d = 2: x1, · · · ,xn ∼ N (0, σ2I) and y1, · · · ,ym ∼
N (0.5, σ2I) with σ = 0.05, consider uniform weights a = 1

n1n,b = 1
m1m and c(xi,yj) = ∥xi − y∥22.

Compute the OT plan using the previous algorithm with varying ε ∈ {0.001, 0.01, 0.1, 1} and the
dual loss during the iteration (for only one ε). Vizualize the plan (for different ε) using the code
below and compare with the unregularized problem.

def plot_plan(X, Y, P, ax, thresh=1e-6, scale=1.0):
P is the OT plan
n, m = P.shape[0], P.shape[1]
Pmax = P.max()
for i in range(n):

for j in range(m):
if P[i, j] / Pmax > thresh:

ax.plot([X[i, 0], Y[j, 0]],
[X[i, 1], Y[j, 1]],
color='black',
alpha=(P[i, j] / Pmax)*scale)

Q3. Now compute the OT plan with ε = 1e− 5. What happens ? What can you suggest to overcome
this problem ?

We define the logsumexp of a vector z as LSE(z) = log(
∑

i exp(zi)) and the softmin at level ε > 0 as
softminε z = −εLSE(−z/ε).

Q4. Show that for any α ∈ R we have LSE(z + α1) = α + LSE(z). Deduce that softminε z = α +
softminε{z− α1}.

Q5. What is the value of softminε z as ε goes to 0? Prove it. What is the problem when computing
softminε z when ε is small ?

Q6. Based on the previous answers code a stable implementation of softmin.

Q7. Show that the iterations of Sinkhorn’s algorithm are equivalent to choosing g(0) ∈ Rm and then
iterating for k ≥ 1

∀i ∈ [[n]], f
(k)
i ← ε log(ai) + softminε

(
Cij − g

(k−1)
j

)
j
,

∀j ∈ [[m]], g
(k)
j ← ε log(bj) + softminε

(
Cij − f

(k)
i

)
i

k ← k + 1 .

(2)

page 1

These iterations are called the log-domain Sinkhorn. Implement these iterations and show on the
previous example that it is more stable. What is the main drawback ?

Q8. Compare the previous implementations with the result of the POT library (you can use ot.sinkhorn).

Q9. Generate data according to the following code and plot the corresponding points.

from sklearn.datasets import make_blobs
import numpy as np
centers = np.array([[0, 0],

[1, 1],
[1, 0]])

n_samples = np.array([50, 100, 50])
X, y = make_blobs(n_samples=n_samples, centers=centers, shuffle=False,
cluster_std=0.1)

Q10. The previous dataset corresponds to one distribution α. Compute and plot the optimal transport
plan corresponding to OTε(α, α) for varying ε. How do you interpret the result ?

page 2

