ENS Lyon
2024/2025 Mathurin Massias, Titouan Vayer, Quentin Bertrand

LAB 3 : Generative modeling with optimal transport

In this practical session' we will practice the Wasserstein GAN in order to generate samples according

to a distribution that we want to approximate. If pgaia is the data distribution and pg is the parametrized
distribution the Wasserstein GAN aims at minimizing the quantity

min W1 (pdata, o) = min max Egp,,,, [f(@)] = Eznp, [f ()] - (1)
0 6 felip,

In practice z ~ py <= x = Gy(2),z ~ N(0,1;) where Gy is a neural network with parameters 6. We
usually call Gy the generator. In practice we also tackle (1) by parametrizing f with another neural
network Dg that should be approximately 1-Lipschitz and overall we tackle the optimization problem

minmax Eqvp,,,[Ds(@)] — Bz, [P (Go(2)] 2)

For this we will need to have pytorch installed and then to import the following packages.

import torch

import torch.nn as nn

import matplotlib.pyplot as plt

import numpy as np

from torch.utils.data import Dataloader
import torch.autograd as autograd

- EXERCISE 1: WGAN WITH CLIPPING AND GRADIENT PENALTY -

We will work with synthetic data generated according the the following snippet.

nb_samples = 10000
radius = 1

nz = .1

X_train = torch.zeros((nb_samples, 2))

r = radius + nz*torch.randn(nb_samples)
theta = torch.rand(nb_samples)*2*torch.pi
X_train[:, 0] = r*torch.cos(theta)
X_train[:, 1] = r*torch.sin(theta)

Q1. Plot the discrete distribution corresponding the the data above. Is it pqata 7

We will now create our two neural networks Gg and Dg.
Q2. What is the size of the input and output of these functions ?

Q3. The architecture for the two neural networks are the following: both are Multilayer perceptron
with two hidden layers with sizes respectively 128 and 64 and ReLU activation functions. Using
nn.Linear and nn.ReLU complete the following code to produce the different architectures.

1This practical session is based on code by Nicolas Courty and Rémi Flamary.

page 1

class Generator(nn.Module):
def __init__(self, noise_dim=10):
super (Generator, self).__init__()
self.noise_dim = noise_dim
self .model = nn.Sequential(
to complete

)

def forward(self, z):
return # to complete

class Discriminator (nn.Module):
def __init__(self):
super (Discriminator, self).
self .model = nn.Sequential(
to complete
)

init__()

def forward(self, x):
return # to complete

In practice to train the generator and discriminator solving (3) we sample some noise from the latent
distribution and some real data points and we minimize/maximize a finite average. To plot the generated
samples we can use the following snippet

def generate_images(generator_model, noise_dim, num_samples=1000):
with torch.no_grad():
z = torch.Tensor(np.random.normal(0, 1, (num_samples, noise_dim)))
predicted_samples = generator_model(z.type(torch.float32))
plt.figure(figsize=(6, 6))
plt.scatter(X_train[:, 0], X_train[:, 1], s=40, alpha=0.2,
edgecolor='k', marker='+', label='original samples')
plt.scatter(predicted_samples[:, 0], predicted_samples[:, 1], s=10,
alpha=0.9, c='r', edgecolor='k', marker='o', label='predicted')
plt.grid(alpha=0.5)
plt.legend(loc='best"')
plt.tight_layout ()
plt.show()

Q4. We will first impose limit the Lipschitz constant of the discriminator by clipping its weights after
each training step. First initialize the discriminator/generator with a latent dimension equal to 2.

Q5. To train the networks fill the following code and comment it

page 2

Hyperparameters
1lr_G = #to choose
1lr_ D = #to choose
n_epochs = #to choose
clip_value = #to choose
n_critic =5
batch_size =
optimizer_G = torch.optim.Adam(# to fill,
lr=1r_G, betas=(0.5, 0.9))
optimizer_D = torch.optim.Adam(# to fill,
lr=1r_D, betas=(0.5, 0.9))
dataloader = Dataloader(X_train, batch_size, shuffle=True) #data loader
for epoch in range(n_epochs):

for i, x in enumerate(dataloader):

x = x.type(torch.float32)

#to choose

optimizer_D.zero_grad()

Sample noise for generator input
z = #to fill

Generate a batch of fake data
fake_x = # to fill

Compute loss for the discriminator
loss_D = #to fill

loss_D.backward() # backpropagation
optimizer_D.step()

Clip weights of discriminator
for p in discriminator.parameters():
p.data.clamp_(-clip_value, clip_value)

Train the generator every n_critic iterations
if i % n_critic ==

optimizer_G.zero_grad()
fake_x = # to fill
loss_G = # to fill

loss_G.backward()
optimizer_G.step()

Visualization of intermediate results
if epoch % 10 == 0:

print ("Epoch: ", epoch)
generate_images (generator, noise_dim)

Q6. Test the code with specific choices of hyperparameters. Is it sensitive to hyperparameters 7

The weight clipping is a very crude solution for enforcing the Lipschitz constant. The idea now is to rely

page 3

on a different loss promoting this regularization. One possibility writes

it X By, (D (0)] = Baor0,1) (D (Ga(2))] + A Esl(|V Da(@) |2 = 1?). (3)

In practice & is sampled as a linear combination of real and fake data points.

Q7. The following code computes VDg(%1),---,VDg(&y,).

def compute_gradient_penalty(D, real_samples, fake_samples):
Random weight term for interpolation between real and fake samples
alpha = torch.Tensor (np.random.random((real_samples.size(0), 1)))
Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples))
d_interpolates = D(interpolates.requires_grad_(True))
Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(d_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True,
) [0]

return gradients

Use it to retrain the previous networks without weight clipping but with gradient penalty. You must
choose a regularization parameter \.

- EXERCISE 2 (IF TIME): WGAN oON MNIST DATA -

Use the previous work to generate MNIST images (you can use Google Collab if you want). To load
these data you can use the snippet (good luck!).

import torchvision.transforms as transforms
from torchvision import datasets
dataloader = torch.utils.data.DataLoader (
datasets.MNIST(
", ./../data/mnist",
train=True,
download=True,
transform=transforms.Compose (
[transforms.Resize(img_size), transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])]
),

),
batch_size=batch_size,
shuffle=True,

page 4

