
Simplex reminder

Mathurin Massias

Last updated: November 28, 2024

Contents

1 Linear programming and the simplex algorithm 1
1.1 Linear programming . 1
1.2 The (revised) simplex algorithm . 4
1.3 How to find a basic feasible solution to initialize the algorithm? 7

1 Linear programming and the simplex algorithm

Resources: Nocedal and Wright (1999, Chapters 12 and 13)

1.1 Linear programming

Definition 1.1. Let m,n ∈ N∗, A ∈ Rm×n, b ∈ Rm, c ∈ Rn. The following optimiza-
tion problem is called a Linear Program (LP):

min
x∈Rn

c⊤x s.t. Ax = b, x ≥ 0 . (1.1)

We consider only the setting where m < n: otherwise, there is much likely at most one
solution to Ax = b, so the optimization problem is not very interesting. We also consider
that A has rank m; if the rank is strictly smaller, then some constraints are redundant,
and can be removed from the problem without affecting it.

1

Proposition 1.2 (Lagrangian and KKT). The Lagrangian writesa:

L(x, λ, µ) = c⊤x+ λ⊤(b− Ax)− µ⊤x . (1.2)

The KKT conditions, crucial to solve the LP, are:

c− A⊤λ− µ = 0 (1.3)

Ax = b (1.4)

x ≥ 0 (1.5)

µ ≥ 0 (1.6)

µixi = 0 ∀i ∈ [m] (1.7)

awe use this formulation for consistency with existing textbooks, but beware in the case where
the constraint is Ax ≤ b the second term will be +λ⊤(Ax− b)

Exercise 1.1. Write down the derivation of the above KKT conditions for the LP (1.2).

We will not need the dual, but we derive it because we like duality. The reader in a
rush can skip the remarks about duality. The dual of Problem (1.2) is obtained as:

max
λ,µ≥0

min
x

λ⊤b+ x⊤(c− A⊤λ− µ) (1.8)

⇔ max
λ,µ≥0

λ⊤b s.t. c− A⊤λ− µ = 0 (1.9)

⇔ max
λ

λ⊤b s.t. c− A⊤λ ≥ 0 (1.10)

⇔ max
λ∈Rm

λ⊤b s.t. c ≥ A⊤λ (1.11)

Remark 1.3. It may be convenient to keep the variable µ explicit, and write the dual as:

max λ⊤b s.t. A⊤λ+ µ = c (1.12)

The reason is that by complementary slackness, we must have for a KKT point µixi = 0,
a property that is exploited by the simplex algorithm.

Remark 1.4 (Alternate forms). There is an alternate formulation of (1.2), in which one
uses the constraint Ax ≤ b:

min
x∈Rn

c⊤x s.t. Ax ≤ b, x ≥ 0 , (1.13)

but it turns out (Exercise 1.2) that this form is equivalent to form (1.2). The dual for
(1.13) is the same as before, except for a positivity constraint on λ:

max
λ∈Rm

λ⊤b s.t. c+ A⊤λ ≥ 0, λ ≥ 0 (1.14)

Also, some people write the problem as a maximization problem: maxx∈Rn c⊤x s.t.
Ax = b, x ≥ 0. The dual is then miny b

⊤y s.t. A⊤y ≥ c, y ≥ 0, which can be obtained
easily with the above results, using that the dual of the dual is the primal together with the
substitution (b, A, c) → (c,−A⊤,−b).

2

Exercise 1.2. By introducing a slack variable z ≥ 0 such that Ax + z = b, check that
problem (1.13) (with inequality constraint) is equivalent to a problem of the form (1.2)
(with equality constraint) with the choice Ã = (A, Idm) ∈ Rm×(m+n), x̃ = (x, z) ∈ Rn+m,
b̃ = b and c̃ = (c, 0m).

By introducing two additional positive variables x+ and x− such that x = x+ − x−,
show that (1.13) without the positivity constraint on x is equivalent to a problem of the
form (1.2) with another choice of Ã, x̃, b̃ and c̃.

The reason why we focus on the KKT condition (1.3) – (1.7) is that they will equip
us with useful tools to find solutions.

Proposition 1.5 (KKT conditions are necessary and sufficient). In Problem (1.2),
the objective function is convex, the inequality constraints are convex and the equality
constraints are affine, so the KKT conditions are sufficient (this is a generic result, see
Prop. 8.36 in https: // mathurinm. github. io/ assets/ 2022_ ens/ class. pdf).
Since all the constraints are linear, the KKT are also necessarya.

afor generic constraints, one usually needs additional qualification conditions such as LICQ or
Mangasarian-Fromowitz, the wikipedia page on KKT conditions has a nice list

Proof. Proof of sufficiency: If (x∗, λ∗, µ∗) satisfies the KKT conditions, then observe that
the affine function L(·, λ∗, µ∗) is in fact constant as it has zero slope. From this, for any
feasible x ∈ Rn and using the KKT conditions for x∗,

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗) (1.15)

c⊤x+ λ∗⊤(Ax− b)− µ∗⊤x = c⊤x+ λ∗⊤(Ax∗ − b)− µ∗⊤x∗ (1.16)

c⊤x− µ∗⊤x = c⊤x∗ (1.17)

but the LHS is smaller than c⊤x because both x and µ∗ are positive, so c⊤x ≥ c⊤x∗.
Therefore any feasible point has a higher objective value than x∗, which is feasible,

which shows that x∗ is optimal.

We now introduce, as exercise, basic properties of the linear program. They are not
needed in the rest of the section, but the proofs are short, elegant, and useful to get
familiar with the problem and its KKT conditions.

Exercise 1.3. Show that the primal value of any feasible point is greater than the dual
value of any dual feasible point (weak duality holds). Show that the primal and the dual
have the same set of KKT conditions.
Show that if one of them has finite optimal value, so does the other, and their optimal
values are equal (strong duality).
Show that if one is unbounded, the other is unfeasible.

3

https://mathurinm.github.io/assets/2022_ens/class.pdf

1.2 The (revised) simplex algorithm

We now introduce the most famous algorithm to solve linear programs: the simplex
algorithm. We first present it under its revised version, that relies on linear algebra
notation. An equivalent formulation under a different form, the tableau simplex, will also
be presented in ??.

The simplex relies on special feasible points x, called basic feasible points.

Definition 1.6 (Basic feasible point). A basic feasible point (BFP) for the LP (1.2)
is a point such that Ax = b, x ≥ 0, and their exists a superset B of the support of x,
such that |B| = m and A:B is invertible. The set B is called a basis.
We say that a BFP is nondegenerated if its support is exactly of size m.

Note that, following Nocedal and Wright (1999), we depart from the classical denom-
ination “basic feasible solution”, because we do not want to call “solution” a point that
is not optimal.

Proposition 1.7 (Nocedal and Wright (1999, Thm. 13. 3)). The basic feasible points
are exactly the vertices of the dual polytope {x ∈ Rm : Ax = b, x ≥ 0}.

The following exercise is not needed to understand the simplex algorithm and can be
skipped. It shows that under reasonable conditions the problem has solutions, and basic
feasible points, and solutions being basic feasible points.

Exercise 1.4 (Nocedal and Wright (1999, Thm 13.2)). Show that if (1.2) has a nonempty
feasible region, then there is at least one basic feasible point.
Show that if (1.2) has solutions, then at least one such solution is a basic feasible point.
Hint: introduce p, the minimal number of non zero coordinates of any feasible point (resp.
solution).

Description of the simplex algorithm The simplex algorithm aims at construct-
ing a triplet satisfying the KKT conditions (1.3) – (1.7). By Proposition 1.5, this will
yield a solution of Problem (1.2).
The algorithms starts with a point x that is a BFP (for now we take it for granted;
we will see how to obtain one in Section 1.3). At each iteration, it modifies x and
constructs µ and λ ensuring three things:

• x remains a BFP, so a fortiori Ax = b and x ≥ 0

• c− A⊤λ− µ = 0

• ∀i ∈ [n], µixi = 0

Therefore, four out of the five KKT conditions will be satisfied at each iteration by
design. The algorithm proceeds as long as the last KKT condition, µ ≥ 0, is not
satisfied.

4

The simplex is presented in Algorithm 1 for completeness, but it is advised to not read
it first, and only refer to it punctually when reading the explanations below.

Algorithm 1 Simplex (Phase II)

input : A, c, x a BFP
1 for t = 0, . . . do
2 B = {j ∈ [n], xj ̸= 0}
3 N = [n] \ B
4 B = A:B ∈ Rm×m

5 N = A:N ∈ Rm×(n−m)

6 λ = B⊤−1
cB

7 µB = 0, µN = cN −N⊤λ (all conditions now satisfied except µ ≥ 0)
8 if mini µi < 0 then
9 q = argmini∈[n] µi (entering variable)

10 d = B−1A:q

11 δ = mini,di>0
(xB)i
di

(if d ≤ 0, problem is unbounded, stop)

12 xB = xB − δd (one variable leaves the support of x)
13 xq = δ (one variable enters the support of x)

14 else
15 stop

output: x, λ, µ

We now explain the principle of the simplex algorithm. Given our current BFP x, we
would like to construct λ and µ so that all KKT conditions are satisfied1.

Steps to construct λ and µ from x, aiming for KKT conditions to hold Because
x is a BFP, Ax = b and x ≥ 0 are satisfied. If we want complementary slackness (1.7)
to hold, we must have µB = 0. So we first set µB = 0. Then, if we want the condition
c−A⊤λ− µ = 0 to hold, by restricting this system of n equations to rows in B, we must
have cB − A⊤

:Bλ = 0 (because µB is 0). Hence, by writing B := A:B, which is invertible
since x is a BFP by assumption, we have

λ = B−1⊤xB (1.18)

Now we can plug this back in c − A⊤λ − µ = 0 to get the value of µ outside of B:
µN = cN −N⊤λ, where N is the complement of B in [n] and N := A:N .

With these little algebraic manipulations, we were therefore able to construct, from a
BFP x, a triplet x, µ, λ that satisfies all KKT conditions except maybe µ ≥ 0.

If our value of µ is positive, then we have found a KKT point, thus a solution. Oth-
erwise, there exists a q such that µq < 0; because of the way µ was constructed (namely
we set µB = 0), we must have q /∈ B.

1we only try, it is not necessarily possible, as this would imply that x is optimal

5

The idea of the simplex algorithm is to try to fix this by increasing xq (which currently
is 0). While doing this, we aim at maintaining three properties: Ax must remain equal to
b, x must remain positive, and x must remain a BFP, i.e. have m non zero entries. Let’s
find a direction and an update length under these constraints.

Finding an update direction d: To modify x while preserving Ax = b, we must thus
move along a direction that is in the kernel of A. Wlog consider that B = {1, . . . ,m}, and
so we have that the variable that will enter the support/basis q, is greater than m + 1.
Since A has rank m, the m+ 1 columns (A:1, . . . , A:m−1, A:m, A:q) are linearly dependent.
There exist (d1, dm−1, dm, dq) not all equal to 0 such that

∑m
i=1 diA:i+dqA:q = 0. Since A:B

is invertible, we cannot have dq = 0 (this would imply that all other di’s are zero). Hence,
dividing by −dq and renaming the other di’s to di, we can assume than

∑m
i=1 diA:i = A:q.

With d = (d1, . . . , dm) ∈ Rm, this rewrites as Bd = A:q (recall that B := A:B).
By construction of d, we see that increasing xq from 0 to δ > 0 and decreasing

xB by −δd will keep Ax constant, since the variation induced in Ax by this change is
−δBd+ δA:q = 0.

How should we choose the update stepsize δ? We want to make a step as large as
possible, until one coordinate in B vanishes, so that exactly one variable enters the basis
(namely q), and another leaves2. It is easy to check that this is achieved by

δ = min
i∈[m]:di>0

(xB)i
di

. (1.19)

If all coordinates of d are negative, the we can pick δ arbitrarily large, and this means
that the problem is unbounded (this is implied by the objective decrease property that
we will prove in Equation (1.25)). Otherwise, since xi > 0 on the basis, we have δ > 0,
so the algorithm moves, and by construction x is still a BFP. We can then proceed to the
next iteration of the simplex algorithm.

Does the algorithm ever finish? One nice observations is that the objective strictly
decreases at each iteration: denoting x+ the value of the primal iterate after the update,
since only the values at indices in B ∪ {q} change, we have that the variation of the

2the careful reader will notice that two variables may leave at the same time, leading to x no longer
being a nondegenrated BFP, as its support will be of size m − 1 isntead of m. Such situations can be
covered but they require an extra level of technicality. We pretend that they don’t happen – which is not
crazy either, as such situations occur in very specific cases only.

6

objective is:

c⊤(x+ − x) = −δc⊤Bd+ δcq (1.20)

= δ(−c⊤BB
−1A:q + cq) (d = B−1A:q) (1.21)

= δ(−λ⊤A:q + cq) (λ = B−1⊤cB) (1.22)

= δ(−(A⊤λ)q + cq) (1.23)

= δ(µq − cq + cq) (c = A⊤λ+ µ) (1.24)

= δµq < 0 (1.25)

because µq < 0 by construction of the algorithm, and δ > 0. Thus, the algorithm can
only visit each BFP/vertex at most once; since all iterates are BFP/vertices and there
are a finite number of BFP/vertices, the simplex algorithm terminates.

1.3 How to find a basic feasible solution to initialize the algo-
rithm?

The trick is very clever and elegant: in the so-called Phase I of the simplex algorithm3,
we will find a BFP by solving another LP, for which it is this time easy to find a BFP as
initialization.

This auxiliary LP uses a lifted variable (x, z) ∈ Rn+m:

min
x,z

1⊤n z s.t. Ax+Dz = b, x ≥ 0, z ≥ 0 (1.26)

where D = diag(sign(b)).

For this, we can check that (0n, |b|) is a basic feasible point4, that we can use a
initialization. Now the objective function of this LP is clearly positive, and if the initial
problem is feasible, for any feasible x one has that (x, 0m) gives an objective value of 0
for the auxiliary problem. Then the optimal value of the auxiliary LP (1.26) is 0, which
means that for any solution5 (x∗, z∗), we must have z∗ = 0, and so Ax∗ = b. In addition
since there are m constraints in the auxiliary LP, (x∗, z∗) has m non zero entries, and so
so does x∗.

Hence, solving the auxiliary LP provides us with a BFP for the original LP: a feasible
point with m non zero entries.

Remark 1.8. For a problem with the constraint Ax ≤ b, one can use as auxiliary problem:

min
x0,x

x0 s.t. Ax ≤ b+ x01m, x0 ≥ 0, x ≥ 0 (1.27)

3Phase II is the procedure described in the previous section, which requires a BFP for initialization
4that’s why we needed the signs in D, because of the positivity constraint
5a degenerated case with non unique solution is possible, but addressable

7

we can create a BFP py picking x = 0, x0 large enough (−mini bi), which sets exactly one
slack variable to 0. We are left with 1 + (m − 1) nonzero variables, the point is feasible:
all good.

If instead we want can only use a solver working with the equality constraint, we use
the lifted formulation using slack variables z ∈ Rn together with an initialization x = 0m,
x0 = −mini bi so that all zi are non zero except one.

8

References

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

9

	Linear programming and the simplex algorithm
	Linear programming
	The (revised) simplex algorithm
	How to find a basic feasible solution to initialize the algorithm?

