
Notes for the Optimal Transport class

Quentin Bertrand, Mathurin Massias, Titouan Vayer

Last updated: February 10, 2026

Contents

1 Review of OT, EOT, and the Sinkhorn Algorithm 1

2 Unbalanced Optimal Transport 2

1 Review of OT, EOT, and the Sinkhorn Algorithm

Let (xi)
n
i=1 and (yj)

m
j=1 be two sets of points in Rd. Let a ∈ Rn and P ∈ Rm be the mass

vectors associated with these points, and let C = (d(xi,yj))i,j∈[n]×[m] ∈ Rn×m be the cost
matrix between the points.

Definition 1.1 (OT). The optimal transport (OT) problem is written as:

min
P≥0

⟨C,P⟩, s.t. P1m = a, PT1n = P (1.1)

A dual formulation (Dual OT) is given by:

max
f ,g
⟨a, f⟩+ ⟨P,g⟩, s.t. ∀(i, j) fi + gj ≤ Ci,j (1.2)

OT is a linear problem but is nevertheless difficult to solve efficiently.

Definition 1.2 (EOT). The entropic regularized optimal transport problem (EOT) is
written (for ε > 0) as:

min
P≥0

⟨C,P⟩+ ε
∑
i,j

Pi,j(logPi,j − 1), s.t. P1n = a, PT1m = P (1.3)

The main motivation for entropic regularization is to remove the constraints in the dual
problem, which then takes the following form (Dual EOT):

max
f ,g
⟨a, f⟩+ ⟨P,g⟩ − ε

∑
i,j

exp

(
fi + gj −Ci,j

ε

)
(1.4)
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EOT may appear more difficult to solve than OT, but in fact it is simpler since
there are no longer any constraints. One can use the Sinkhorn algorithm; however, the
resulting transport plan is never exactly the same as that of OT due to the regularization.
In particular, a major difference with OT is that the optimal transport plan P ∗ is dense,
whereas there always exists a solution to OT with at most m+ n− 1 nonzero entries.

Definition 1.3 (Sinkhorn Algorithm). Denoting by K = exp(−C/ε) the Gibbs kernel
(exponential being applied pointwise), the Sinkhorn algorithm consists in iterating the
following two steps until convergence:

u← a/(Kv), v← P/(KTu)

In practice, the algorithm converges very quickly (linear convergence). The dual potentials
of the EOT dual problem are recovered via the relations f = ε log u and g = ε log v.

Remark 1.4. The Sinkhorn algorithm solves a matrix scaling problem, that is, it finds
vectors u and v such that diag(u)K diag(v) has rows summing to a and columns summing
to P.
Step 1 of the algorithm updates u to have correct row sums, while step 2 updates v to have
correct column sums.

Theorem 1.5. The Sinkhorn algorithm is equivalent to an alternating maximization
scheme for the EOT dual problem.

Proof. Let us denote dual(f ,g) = ⟨a, f⟩+ ⟨P,g⟩ − ε
∑

i,j exp
(

fi+gj−Ci,j

ε

)
.

If we seek to maximize this expression with respect to f , the function is concave and it
suffices to set the gradient to zero. We obtain

(∇f dual(f ,g))i = ai −
∑
j

exp

(
gj −Ci,j

ε

)
exp (fi/ε) = 0 (1.5)

⇐⇒ exp(fi/ε) = ai/

(∑
j

exp(gj/ε) exp(Ci,j/ε)

)
(1.6)

⇐⇒ ui = ai/(Kv)i (1.7)

With u = exp(f/ε) and v = exp(g/ε). By applying the same reasoning while maxi-
mizing with respect to g, we obtain v = P/(KTu).

2 Unbalanced Optimal Transport

Remark 2.1. In the following, we denote i{a} : x 7→

{
0 if x = a,

+∞ otherwise.
the convex

indicator function. Note that it differs from the classical indicator function. The idea is
that its generalization to a set C (0 on C, +∞ elsewhere) is convex if and only if C is
convex.
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There may be some problematic cases when solving OT. For instance, if the total mass
to be transported differs on each side,

∑
ai ̸=

∑
bj, or if some points are isolated. To

address these issues, one can use unbalanced OT.

Definition 2.2 (Unbalanced OT). The unbalanced optimal transport (UOT) problem is:

min
P≥0

⟨C,P⟩+D(P1n, a) +D(PT1m,P) (2.1)

where D is a kind of distance.

Remark 2.3. We have simply replaced the mass conservation constraints present in OT
by regularization terms that penalize discrepancies between the marginals and the mass
vectors.
Taking D(x,y) = i{0}(x− y), we recover OT.

D is generally a φ-divergence (such as the Kullback–Leibler divergence); these are
functions that can be written as:

Dφ(x,y) =

∫
φ

(
dx

dy

)
dy or

∑
i

φ

(
xi

yi

)
yi in the discrete case.

In our case, we fix D(x,y) = τ KL(x,y) with τ > 0, and consider EOT.

Definition 2.4 (Fenchel–Legendre Transform). Let φ : Rd → R; we define its Fenchel–
Legendre transform by:

φ∗(u) = sup
x
⟨x,u⟩ − φ(x)

Example 2.5. 1. For φ(x) = a
2
∥x∥2 (a > 0), we have φ∗(u) = 1

2a
∥u∥2 by setting the

gradient to zero.

2. For φ(x) = ⟨C,x⟩, we have φ∗(u) = i{C}(u).

3. For φ(x) = i{C}(x), we have φ∗(u) = ⟨C,u⟩.

Proposition 2.6. 1. f ∗ is convex because it is the supremum of affine (hence convex)
functions.

2. If f is convex (and lower semi-continuous), then f ∗∗ = f .

3. If f is convex and differentiable, then ∇f ∗ = (∇f)−1 up to a mild technical condi-
tion.

4. If f is separable, then f ∗ is separable (i.e. f(x) =
∑

i fi(xi)→ f ∗ (u) =
∑

i f
∗
i (u)).

The Fenchel–Legendre transform is a very useful tool for solving optimization prob-
lems. It is somewhat analogous to the Fourier transform in signal processing.
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Let us now see how to solve UOT. We will compute its dual using the Fenchel trans-
form. Let us return to our UOT problem and introduce the functions F (u) = τ KL(u, a)
and G(v) = τ KL(v,P) (the derivation also holds for generic penalizations).

min
P≥0
⟨C,P⟩+ ε

∑
i,j

Pi,j(logPi,j − 1) + τF (P1n) + τG(PT1m)

= min
P≥0,u,v

⟨C,P⟩ − εH(P) + τF (u) + τG(v) s.t. P1n = u,PT1m = v

= min
P≥0,u,v

⟨C,P⟩ − εH(P) + τF (u) + τG(v) + max
f ,g
⟨f ,u−P1n⟩+ ⟨g,v −PT1m⟩

=max
f ,g

min
P≥0,u,v

⟨C,P⟩ − εH(P) + τF (u) + τG(v) + ⟨f ,u−P1n⟩+ ⟨g,v −PT1m⟩

=max
f ,g

min
P≥0
⟨C− f1T

n − 1mg
T ,P⟩ − εH(P) + min

u
(⟨u, f⟩+ τF (u)) + min

v
(⟨v,g⟩+ τG(v))

=max
f ,g
−ε
∑
i,j

exp

(
fi + gj −Ci,j

ε

)
− τF ∗

(
−f
τ

)
− τG∗

(
−g
τ

)
(Dual of UEOT)

Indeed minu⟨u, f⟩ + τF (u) = − supu⟨u,−f⟩ − τF (u) = −τ supu⟨u,− f
τ
⟩ − F (u) =

−τF ∗(− f
τ
), and similarly minv⟨v,g⟩+ τG(v) = −τG∗(−g

τ
).

Remark 2.7 (Sanity check). If we take F (u) = i{a}(u) and G(v) = i{P}(v), then F ∗(u) =
⟨a,u⟩ and G∗(v) = ⟨P,v⟩. We recover the dual problem of EOT.

Since the function to be maximized is concave and smooth, we proceed as for EOT,
namely we alternate maximization with respect to f and g:

∇ = − exp(f/ε)⊙ (K exp(g/ε)) +∇F ∗ (−f/τ) = 0

⇐⇒ −f/τ = ∇F (u⊙Kv)

In the case where F (u) = τ KL(u, a) = τ
∑

i ui log(ui/ai)−ui+ai, we have ∇F (u) =∑
i log(ui/ai).

Thus, fi = −τ log(ui(Kv)i/ai), which yields after computation

ui = exp(fi/ε) =

(
ai

(Kv)i

) τ
τ+ε

.

Definition 2.8 (Sinkhorn for UOT). The Sinkhorn algorithm for UOT consists in iter-
ating the following two steps until convergence:

u←
( a

Kv

) τ
τ+ε

, v←
(

P

KTu

) τ
τ+ε

Remark 2.9. As τ → ∞, the Sinkhorn algorithm for UOT converges to the Sinkhorn
algorithm for EOT.
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