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Blog post on generative models

https://dl.heeere.com/cfm/

“A Visual Dive into Conditional Flow Matching”, A. Gagneux, S. Martin, R. Emonet, Q.
Bertrand, M. Massias
International Conference on Learning Representations (ICLR) 2025 Blog post

I have tons of additional refs and material, just ask (even after the workshop)
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Outline

Generative modelling: the big picture

Normalizing flows

Continuous normalizing flows

Flow matching
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Generative modelling in a nutshell

Given x(1), . . . , x(n) sampled from pdata, learn to sample from pdata

Example:

• x(1), . . . , x(n) = real images ∈ Rd

• pdata = distribution of real images

Main challenges of generative modelling?

• enforce fast sampling

• generate high quality samples

• properly cover the diversity of pdata
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Modern way to do generative modelling

Map simple base distribution (e.g. Gaussian), p0, to pdata through a map T : Rd → Rd

Vocabulary: the distribution of T (x) when x ∼ p0 is the pushforward, T#p0

Why should the base distribution be simple?
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Illustrative example

• In 1D: x ∈ R

• suppose we only know how to sample from a standard Gaussian, N (0, 1)

• we want to generate samples from N (a, b2) (Gaussian with mean a, standard deviation b)

• how do we achieve this?

↪→ we sample x from N (0, 1), use T (x) = a+ bx. Then T (x) ∼ N (a, b2)

With a more complex T , we can create more complex distributions T#p0
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How to find a good T?

Remember our approach:

• sample x from simple distribution (e.g. Gaussian noise)

• the generated image is T (x)

Want: T#p0 close to pdata

what’s the difference with the example in previous slide?

Big question: “close” in which sense? How could I achieve this?
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Maximum likelihood detour

• Suppose I flip a coin 10 times, and get: HHTHHTTTHT (5 head, 5 tail)

• Then I ask you to choose between 2 models of the coin:

• model 1: the coin lands on H with probability 0.1 (on T with proba 0.9)

• model 2: the coin lands on H with probability 0.5 (on T with proba 0.5)

Which one do you choose? Why?

• Under model 1, probability of observing said sequence is 0.15 0.95 ≈ 6.10−6

• Under model 2, probability of observing said sequence is 0.55 0.55 ≈ 1.10−3

“The best model is the one that explains the observed data the best”
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Maximum likelihood detour

Is there a model under which the observed sequence is even more probable?
= amongst all models, which is the best?

• suppose you observe n results of a coin toss, y1, . . . , yn ∈ {0, 1}

• Bernoulli model: P(y = 1) = p ∈ [0, 1] (choosing model = choosing parameter p )

• compact formula P(y = yi) = pyi(1− p)1−yi ∈ [0, 1]

• for a given p, what is the probability of observing the full observation set
(y1, . . . , yn)?

• likelihood of the observations (probability to observe (y1, . . . , yn)):
∏n

1 p
yi(1− p)1−yi

• maximize the likelihood ⇐⇒ minimize the negative log likelihood ⇐⇒
minp −

∑n
1 yi log p−

∑n
1 (1− yi) log(1− p)

• solution in p?
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Back to generative: how to find a good T

• choose T as parametric map: Tθ (a neural network)

• find best parameters θ by maximizing the log-likelihood of available samples:

θ∗ = argmax
θ

n∑
i=1

log
(
(Tθ#p0︸ ︷︷ ︸

:=p1

)(x(i))
)

(links with empirically minimizing the Kullback-Leibler divergence KL(pdata, Tθ#p0))

https://mathurinm.github.io/blog/kl_mle/
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How to find a good T : computing the likelihood

θ∗ = argmax
θ

n∑
i=1

log
(
(Tθ#p0︸ ︷︷ ︸

:=p1

)(x(i))
)

• we have this objective to maximize in θ, but can we actually compute it?

• we can rely on the change of variable formula:

log p1(x) = log p0(T
−1
θ (x)) + log |det JT−1

θ
(x)|

JT−1
θ

is the Jacobian (=matrix of partial derivatives – in 1D: Jf (x) = f ′(x))

Exercise: p0 = N (0, 1), Tθ(x) = ax+ b, compute T−1
θ , its derivative, and then p1
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The change of variable formula

log p1(x) = log p0(T
−1
θ (x)) + log |det JT−1

θ
(x)|

= a mathematical formula to compute the probability of a generated image Tθ(x)

In practice we’ll use a neural network for Tθ. What do we need?

• Tθ must be invertible

• T−1
θ should be easy to compute in order to evaluate the first right-hand side term

• T−1
θ must be differentiable

• the (log) determinant of the Jacobian of T−1
θ must not be too costly to compute

Normalizing Flows (2015) = neural architectures satisfying these requirements
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Normalizing flows

• Key observation: If T and T ′ satisfy the requirements, so does T ◦ T ′

• Build T as composition of simple blocks ϕk satisfying the invertibility + Jacobian
constraints

(picture from Rezende & Mohamed 2015)

15



Examples of normalizing flows

• planar flow: ϕk(x) = x+ σ(b⊤k x+ ck)ak (parameters to learn ak ∈ Rd, bk ∈ Rd, ck ∈ R)

Jϕk
(x) = Id + σ′(b⊤k x+ ck)akb

⊤
k

id + rank one, all good for the determinant (det(Id + uv⊤) = 1 + v⊤u)

• real NVP (triangular Jacobian, details in blog post)

but too many constraints on the architecture, restricts the expressivity
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From discrete to continuous time: ResNets

Residual Networks (ResNets): from layer ℓ equation

xℓ+1 = σ(Wxℓ + bℓ)

... to
xℓ+1 = xℓ + σ(Wxℓ + bℓ)

Why does this help?

Continuous time limit: Neural Ordinary Differential Equations

xℓ+1 = xℓ + δσ(Wxℓ + bℓ)

xℓ+1 − xℓ

δ
= σ(Wxℓ + bℓ)

:= uℓ(xℓ)

Is the last equation reminiscent of something?
∂tx(t) = u(x(t), t)
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Continuous normalizing flows

• define Tθ implicitly through ODE: Tθ(x0) := x(1), where{
x(0) = x0

∂tx(t) = uθ(x(t), t) ∀t ∈ [0, 1]

• learn the velocity field uθ : Rd × [0, 1] → Rd

(dynamic animation in blog post)

First win: the mapping defined by the ODE, T (x0) := x(1) is inherently invertible (why?)
19
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Recap: continuous normalizing flows (CNF)

• work in the continuous-time domain: t ∈ [0, 1]

• model the continuous solution (x(t))t∈[0,1]

• learn the velocity field u as uθ : Rd × [0, 1] → Rd

• sample by solving the ODE with x0 ∼ p0

The map T is no longer explicit, it is defined by solving an ODE

20



Mathematical toolbox: the IVP trifecta

{
x(0) = x0

∂tx(t) = u(x(t), t) ∀t ∈ [0, 1]

3 objects associated to this ODE:

• the velocity field u : Rd × [0, 1] → Rd

• the flow fu : Rd × [0, 1] → Rd: fu(x, t) = solution at time t to the initial value
problem with initial condition x(0) = x

• the probability path (pt)t∈[0,1] = the distributions of fu(x, t) when x ∼ p0
(pt = fu(·, t)#p0)

Link: continuity equation
∂tpt + div(utpt) = 0

21



The IVP trifecta

22



How do we learn the velocity uθ now?

• Saved by the instantaneous change of variable formula:

d

dt
log pt(x(t)) = −tr Juθ(·,t)(x(t)) = −div uθ(·, t)(x(t)) ∀t ∈ [0, 1]

• allows computing log p1(x
(i)): solving ODE

• nice: avoid computing the full Jacobian with the Hutchinson trace trick
(https://mathurinm.github.io/blog/hutchinson/)

• constraints on u much less stringent than in discrete normalizing flows: only need
unique ODE solution (OK if u Lipschitz in x and continuous in t)

23
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Issues of CNFs

• during training, we need to solve ODEs (why?)

• we then need to backpropagate inside an ODE solver ↪→ no black box

• this is terribly unstable

↪→ Flow Matching solves this: a different way to train CNFs!

24
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Recap

We have:
• source distribution p0 = N (0, Id)

• target distribution pdata (e.g. realistic images)

We want:
• to generate new samples from pdata

How?
• by solving on [0, 1]{

x(0) = x0

ẋ(t) = u(x(t), t) ∀t ∈ [0, 1]

• such that solution x(1) ∼ pdata when x(0) ∼ p0

26



Searching for a good u

{
x(0) = x0

ẋ(t) = u(x(t), t) ∀t ∈ [0, 1]

• ODE defines probability path (pt)t∈[0,1] = laws of the solution x(t) when x(0) ∼ p0

• many ways to go from p0 to p1 = pdata

Flow matching targets a specific probability path/velocity

27



Searching for a good u: the magic

Theorem 1
Define Xt ≜ (1− t)X0 + tX1 (X0: noise, X1: clean image). Then:

u⋆(x, t) := E[X1 −X0|Xt = x] transports p0 to pdata

Proof: 4 lines, based on continuity equation.
28



We are done

• we have our target, valid velocity:

u⋆(x, t) = E[X1 −X0|Xt = x]

• L2 characterization of conditional expectation:

E[Y |Z = ·] = argmin
f measurable

EY,Z∥Y − f(Z)∥2

• so we can approximate u⋆ with a neural network uθ, by solving:

min
θ

E x0∼p0
x1∼pdata

t∼U([0,1])

∥uθ(xt, t)− (x1 − x0)∥2 wherext := (1− t)x0 + tx1

• why are we happy with this training loss?
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Training flow matching

min
θ

E x0∼p0
x1∼pdata

t∼U([0,1])

[
∥uθ(xt, t)− (x1 − x0)∥2

]
xt := (1− t)x0 + tx1
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Additional topics that we can discuss

• why does flow matching create new data?

• discrete flow matching

• equivalence with diffusion

• conditioning on text (prompt)

• autoregressive models (GPT-like)

Diffusion lab: https://github.com/Badr-MOUFAD/gen-ai-lab1/
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Notebook time

https://mathurinm.github.io/teaching/

• lab fm full.py: click and play

• lab fm mid.py: fill training loop

• lab fm todo.py: fill generation, training, plots
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