REPUBLIQUE - —_— o —
FRANCAISE Al — —- . —
it ENS DE LYON

Flow-based generative models

Mathurin Massias

Al hackathon for women in the mathematical sciences
16/02/2026

https://mathurinm.github.io

https://mathurinm.github.io

Tenured Researcher at INRIA (French institute for Maths & CS)

PhD in Optimization for ML from Institut Polytechnique de Paris

Work in ML, Optimization, Generative models

Part time teacher at Ecole Polytechnique and Ecole Normale Supérieure

Open source in Python: maintainer of celer, skglm, benchopt

.eewm *OW,,, Benc

https://mathurinm.github.io/

https://mathurinm.github.io/

Blog post on generative models

https://dl.heeere.com/cfm/

= “A Visual Dive into Conditional Flow Matching”, A. Gagneux, S. Martin, R. Emonet, Q.
Bertrand, M. Massias
International Conference on Learning Representations (ICLR) 2025 Blog post

| have tons of additional refs and material, just ask (even after the workshop)

https://dl.heeere.com/cfm/

Outline

Normalizing flows

Continuous normalizing flows

Flow matching

Generative modelling in a nutshell

[Given o), 2" sampled from paa, learn to sample from paa..]
VAot
oot Pdata
o oM ... 2™ = real images € R?

® paata = distribution of real images

. . . 2 2D 23) 2@ £ 6)
Main challenges of generative modelling?

Generative modelling in a nutshell

[Given o), 2" sampled from paa, learn to sample from paa..]
) ot
oot Pdata
o oM ... 2™ = real images € R?

® paata = distribution of real images

. . . 2 2D 23) 2@ £ 6)
Main challenges of generative modelling?

o enforce fast sampling
o generate high quality samples

e properly cover the diversity of pgata

Modern way to do generative modelling

Map simple base distribution (e.g. Gaussian), po, t0 pgata through a map 7' : R — R

Po T

Pdata

Vocabulary: the distribution of T'(z) when x ~ py is the pushforward, T#po

Modern way to do generative modelling

Map simple base distribution (e.g. Gaussian), po, t0 pgata through a map 7' : R — R

Po T

Pdata

Vocabulary: the distribution of T'(z) when x ~ py is the pushforward, T#po

Why should the base distribution be simple?

Illustrative example

In1D:x € R
suppose we only know how to sample from a standard Gaussian, A/(0, 1)
we want to generate samples from N (a, b*) (Gaussian with mean q, standard deviation b)

how do we achieve this?

Illustrative example

e In1D:z e R

suppose we only know how to sample from a standard Gaussian, A/(0, 1)

we want to generate samples from N (a, b*) (Gaussian with mean q, standard deviation b)

how do we achieve this?

< we sample z from N(0, 1), use T'(z) = a + bx. Then T(z) ~ N (a, b?)

Po T(x) = 0.5z + 2 Tpo

With a more complex 7', we can create more complex distributions T#py

How to find a good 7?
Remember our approach:

» sample z from simple distribution (e.g. Gaussian noise)

o the generated image is T'(z)

[Want: T#pg close to pyaia]

Po T I

what's the difference with the example in previous slide?

How to find a good 7?
Remember our approach:

» sample z from simple distribution (e.g. Gaussian noise)

o the generated image is T'(z)

[Want: T#pg close to pyaia]

Do T I

what's the difference with the example in previous slide?
Big question: “close” in which sense? How could | achieve this?

Outline

Generative modelling: the big picture

Continuous normalizing flows

Flow matching

Maximum likelihood detour

o Suppose | flip a coin 10 times, and get: HHTHHTTTHT (5 head, 5 tail)

e Then | ask you to choose between 2 models of the coin:

e model 1: the coin lands on H with probability 04 (on T with proba 0.9)

o model 2: the coin lands on H with probability 0.5 (on T with proba 0.5)

Which one do you choose? Why?

Maximum likelihood detour

o Suppose | flip a coin 10 times, and get: HHTHHTTTHT (5 head, 5 tail)

e Then | ask you to choose between 2 models of the coin:

e model 1: the coin lands on H with probability 04 (on T with proba 0.9)

o model 2: the coin lands on H with probability 0.5 (on T with proba 0.5)
Which one do you choose? Why?

e Under model 1, probability of observing said sequence is 0.1°0.9° ~ 6.10~°

e Under model 2, probability of observing said sequence is 0.5°0.5° ~ 1.1073

[“The best model is the one that explains the observed data the best”]

Maximum likelihood detour

Is there a model under which the observed sequence is even more probable?
= amongst all models, which is the best?

e suppose you observe n results of a coin toss, y1,...,y, € {0,1}
» Bernoulli model: P(y = 1) = p € [0,1] (choosing model = choosing parameter p)
e compact formula P(y = ;) = p¥i (1 — p)' =% € [0, 1]

o for a given p, what is the probability of observing the full observation set
(y17 e 7yn)?

Maximum likelihood detour

Is there a model under which the observed sequence is even more probable?
= amongst all models, which is the best?

suppose you observe n results of a coin toss, y1,...,y, € {0,1}

Bernoulli model: P(y =1) =p € [0,1] (choosing model = choosing parameter p)
compact formula P(y = y;) = p¥ (1 —p)1 =% € [0,1]

for a given p, what is the probability of observing the full observation set

(Y155 Yn)?

likelihood of the observations (probability to observe (yi,...,y,)): [1] p¥ (1 —p)*~¥
maximize the likelihood <= minimize the negative log likelihood <

min, — > 7 yilogp — Y7 (1 — y;) log(1 — p)

solution in p?

Back to generative: how to find a good 7’

e choose T as parametric map: Ty (a neural network)

o find best parameters ¢ by maximizing the log-likelihood of available samples:

n
0" = argmaxz log ((Tg#po)(l‘(i)))
[=1 SN——
=p1
(links with empirically minimizing the Kullback-Leibler divergence KL(paata, To#po))
https://mathurinm.github.io/blog/kl_mle/

Tottpo(@}) /0 T

Totpo(e®) 1
pFpo(x'™))s v 1
X i

) 20 20 7@ 2@ 6

v

https://mathurinm.github.io/blog/kl_mle/

How to find a good 7: computing the likelihood

0* = argznaxz log ((To#PO)(x(i)))

=1 L
=p1

o we have this objective to maximize in 6, but can we actually compute it?

How to find a good 7: computing the likelihood

0" = argznax; log ((To#po)(x(i)))

=p1

o we have this objective to maximize in 6, but can we actually compute it?

e we can rely on the change of variable formula:

log py(2) = logpo(Ty " (x)) + log |det J—1 ()|

How to find a good 7: computing the likelihood

0" = argznax; log ((To#po)(x(i)))

=P

o we have this objective to maximize in 6, but can we actually compute it?

e we can rely on the change of variable formula:

log py(2) = logpo(Ty " (x)) + log |det J—1 ()|

Jp is the Jacobian (=matrix of partial derivatives - in 1D: J;(z) = f/(z))

Exercise: py = N (0,1), Ty(x) = ax + b, compute T, ', its derivative, and then p;

The change of variable formula

log p1 () = log po(T, *(x)) + log | det I ()|

= a mathematical formula to compute the probability of a generated image Ty (z)

In practice we'll use a neural network for Ty. What do we need?

The change of variable formula

log p1 () = log po(T, *(x)) + log | det I ()|

= a mathematical formula to compute the probability of a generated image Ty (z)

In practice we'll use a neural network for Ty. What do we need?

e Ty must be invertible
o T, ' should be easy to compute in order to evaluate the first right-hand side term
o T, ' must be differentiable

« the (log) determinant of the Jacobian of 7, ' must not be too costly to compute

[Normalizing Flows (2015) = neural architectures satisfying these requirements]

Normalizing flows

o Key observation: If T"and T” satisfy the requirements, so does T o T"

e Build 7" as composition of simple blocks ¢;, satisfying the invertibility + Jacobian
constraints

(picture from Rezende & Mohamed 2015)

Examples of normalizing flows

o planar flow: ¢x(x) = 2 + (bl x + cx)ar (parameters to learn a; € R, by, € R%, ¢, € R)
Jy, () = Id + o’ (b & + cx)arby

id + rank one, all good for the determinant (det(Id + uv ") = 1 + v Tu)

Examples of normalizing flows

o planar flow: ¢x(x) = 2 + (bl x + cx)ar (parameters to learn a; € R, by, € R%, ¢, € R)
Jy, () = Id + o’ (b & + cx)arby

id + rank one, all good for the determinant (det(Id + uv ") = 1 + v Tu)

o real NVP (triangular Jacobian, details in blog post)

Examples of normalizing flows

o planar flow: ¢x(x) = 2 + (bl x + cx)ar (parameters to learn a; € R, by, € R%, ¢, € R)
Jy, () = Id + o’ (b & + cx)arby

id + rank one, all good for the determinant (det(Id + uv ") = 1 + v Tu)

o real NVP (triangular Jacobian, details in blog post)

but too many constraints on the architecture, restricts the expressivity

Generative modelling: the big picture

Normalizing flows

Flow matching

Outline

From discrete to continuous time: ResNets
Residual Networks (ResNets): from layer ¢ equation
Toy1 = O'(Wa;‘g + bg)

... to
Toy1 = Tp + O'(WJJ@ + bg)

Why does this help?

From discrete to continuous time: ResNets
Residual Networks (ResNets): from layer ¢ equation
Toy1 = O'(Wa;‘g + bg)

... to
Toy1 = Tp + O'(WJJ@ + bg)

Why does this help?

Continuous time limit: Neural Ordinary Differential Equations

Top1 = X0+ (50(W$g + b[)
@ = o(Way + by)
= Ug(l'z)

Is the last equation reminiscent of something?

From discrete to continuous time: ResNets

Residual Networks (ResNets): from layer ¢ equation
Toy1 = O'(Wal‘g + bg)

... to
Toy1 = Tp + O'(Wl‘g + bg)

Why does this help?

Continuous time limit: Neural Ordinary Differential Equations

Top1 = X0+ (50(er + bg)
w = o(Way + by)
= uZ(l'z)

Is the last equation reminiscent of something?

drar(t) = u(a(t),)

Continuous normalizing flows

« define T, implicitly through ODE: Ty (z) := (1), where

z(0) = zg
O (t) = ug(x(t),t) Vt € [0,1]

o learn the velocity field uy : R? x [0, 1] — R?

(dynamic animation in blog post)

First win: the mapping defined by the ODE, T'(x) := z(1) is inherently invertible (why?)

https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/

Recap: continuous normalizing flows (CNF)

work in the continuous-time domain: ¢ € [0, 1]

model the continuous solution (z(t)):c0,1

R

learn the velocity field v as uy : R? x [0,1] — R?

sample by solving the ODE with zy ~ pg

The map T is no longer explicit, it is defined by solving an ODE

20

Mathematical toolbox: the IVP trifecta

x(0) = g
Oz (t) = u(z(t),t) Vte[0,1]

3 objects associated to this ODE:
e the velocity field v : RY x [0,1] — R?

o the flow f*: R x [0,1] — R% f“(z,t) = solution at time ¢ to the initial value
problem with initial condition z(0) =

o the probability path (p;).c(0,1) = the distributions of f*(x,t) when z ~ po
(pe = f*(-,t)#po)

Link: continuity equation

‘@pt +div(up) =0 ‘

21

The IVP trifecta

probability path continuity equation yelocity field
Pt g u(x,t)

y

% o
A% A‘S

% [f

—

5 S
ey
=
flow

f(,t)

22

How do we learn the velocity v, now?

e Saved by the instantaneous change of variable formula:

%logpt(x(t)) = —tr Jy, (0 (2(t) = —divue(-, t)(x(t)) Vte0,1]

o allows computing log p; (z(*): solving ODE

e nice: avoid computing the full Jacobian with the Hutchinson trace trick
(https://mathurinm.github.io/blog/hutchinson/)

e constraints on v much less stringent than in discrete normalizing flows: only need
unique ODE solution (OK if u Lipschitz in 2 and continuous in ¢)

23

https://mathurinm.github.io/blog/hutchinson/

Issues of CNFs

e during training, we need to solve ODEs (why?)
o we then need to backpropagate inside an ODE solver — no black box

e this is terribly unstable

— Flow Matching solves this: a different way to train CNFs!

24

Generative modelling: the big picture

Normalizing flows

Continuous normalizing flows

Outline

25

Recap

We have:

e source distribution pg = A/(0,1d)

o target distribution (e.g. realistic images)
We want:

o to generate new samples from

How?
« by solving on [0, 1]

e such that solution when z(0) ~ py

26

Searching for a good u

 ODE defines probability path (p;),c(0,1) = laws of the solution z(t) when z(0) ~ po

e many ways to go from pg t0 p1 = paata

Flow matching targets a specific probability path/velocity]

27

Searching for a good «: the magic

Define X; £ (1 —)X, + tX; (Xo: noise, X;: clean image). Then:
u*(x,t) := E[X; — Xo|X: =] transports pg 10 pdata

u(x,t) = B[X; — Xo|X; = 2]

Po

Proof: 4 lines, based on continuity equation.

28

We are done

we have our target, valid velocity:
u*(x,t) :E[X] *){()‘ :{E]
L2 characterization of conditional expectation:

EY|Z=]= agmin Eyz[Y - f(Z)|?

f measurable

S0 we can approximate u* with a neural network wuy, by solving:

meinwao;po H’LLQ(,t) — (.l,‘l — .l,‘())H2 where T = (1 — t).’EO + txq
1~~Pdata
t~U([0,1])

why are we happy with this training loss?

Po

nbin]E To~po [||u9(:ct,t) — (z1 — :co)||2]

Z1~Pdata
t~U([0,1])

O

Training flow matching

xp = (1 = t)xo + tay

Pdata

30

Training flow matching

nbin]Ezfg;fOt [Jug (e, t) — (21 — :co)||2] xp = (1 = t)xo + tay
t~u([0.1])
Pdata
Do »
g 1
,* '/

Zo

30

Training flow matching

n%in]Emfg;fOt [Jug (e, t) — (21 — :co)||2] xp = (1 = t)xo + tay
e~ ([0,1])
Pdata
Po
I

@)

= (1 —t)xo +tay

Zo

30

Training flow matching

nbin]Exfg;fOt [Jug (e, t) — (21 — :co)||2] xp = (1 = t)xo + tay
£~ ((0,1])
Pdata
Do ug (e, t) ~ x1 — 20
/' X1
: L

= (1 —t)xo +tay

Zo

30

Po

nbin]E To~po [||u9(:ct,t) — (z1 — :co)||2]

Z1~Pdata
t~U([0,1])

Training flow matching

xp = (1 = t)xo + tay

Pdata

30

W g (o) o1 o))
t~U([0,1])

Training flow matching

xp = (1 = t)xo + tay

Pdata

30

Additional topics that we can discuss

why does flow matching create new data?

discrete flow matching

equivalence with diffusion

conditioning on text (prompt)

autoregressive models (GPT-like)

Diffusion lab: https://github.com/Badr-MOUFAD/gen-ai-labl/

3

https://github.com/Badr-MOUFAD/gen-ai-lab1/

Notebook time

https://mathurinm.github.io/teaching/

e lab_fm full.py: click and play - .._,'é“':'t.g
A .
e lab_fmmid.py: fill training loop ol :‘.;‘ 5‘ :
o] % -3 <4
e lab_fm_todo.py: fill generation, training, plots %"’i.. b
"i

t=0.25 t=0.38 t=0.50 t=10.62 t=0.75 t=0.88 t=1.00

e x)

LA AR AR

32

https://mathurinm.github.io/teaching/

	Generative modelling: the big picture
	Normalizing flows
	Continuous normalizing flows
	Flow matching

