Exploiting structure in sparse GLMs for fast & safe support identification

Mathurin Massias (University of Genoa)

Joint work with:

Alexandre Gramfort (INRIA) Joseph Salmon (Université de Montpellier) Samuel Vaiter (CNRS, UMB)

Table of Contents

The Lasso

Exploiting regularity

Sparse GLMs

More solvers speed-up

The Lasso^{1,2}

$$\hat{\beta} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \underbrace{\frac{1}{2} \left\| y - X\beta \right\|^{2} + \lambda \left\| \beta \right\|_{1}}_{\mathcal{P}(\beta)}$$

•
$$y \in \mathbb{R}^n$$
: observations

- $X = [X_1| \dots |X_p] \in \mathbb{R}^{n \times p}$: design matrix
- sparsity: for λ large enough, $\|\hat{\beta}\|_0 \ll p$
- popular solver in ML: coordinate descent (used here)

¹R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1 (1996), pp. 267–288.

²S. S. Chen and D. L. Donoho. "Atomic decomposition by basis pursuit". In: SPIE. 1995.

Duality for the Lasso

$$\hat{\theta} = \underset{\theta \in \Delta_X}{\operatorname{arg\,max}} \underbrace{\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \|y/\lambda - \theta\|^2}_{\mathcal{D}(\theta)}$$

 $\Delta_X = \left\{ \theta \in \mathbb{R}^n \, : \, \forall j \in [p], \; |X_j^\top \theta| \leq 1 \right\}: \text{ dual feasible set}$

Example: n = 2, p = 3

Primal-dual links

$$\hat{\theta} = (y - X\hat{\beta})/\lambda$$

$$\mathcal{P}(\beta) \ge \mathcal{P}(\hat{\beta}) = \mathcal{D}(\hat{\theta}) \ge \mathcal{D}(\theta)$$

 $\forall \beta, (\exists \theta \in \Delta_X, \operatorname{dgap}(\beta, \theta) \le \epsilon) \Rightarrow \mathcal{P}(\beta) - \mathcal{P}(\hat{\beta}) \le \epsilon$ $\beta \text{ is an } \epsilon \text{-solution whenever } \operatorname{dgap}(\beta, \theta) \le \epsilon$

Choice of dual point

$$\hat{\theta} = (y - X\hat{\beta})/\lambda$$

Standard approach³: at epoch *t*, corresponding to primal $\beta^{(t)}$ and residuals $r^{(t)} := y - X\beta^{(t)}$, take

$$\theta = \theta_{\rm res}^{(t)} := r^{(t)} / \lambda$$

³J. Mairal. "Sparse coding for machine learning, image processing and computer vision". PhD thesis. École normale supérieure de Cachan, 2010.

Choice of dual point

$$\hat{\theta} = (y - X\hat{\beta})/\lambda$$

Standard approach³: at epoch t, corresponding to primal $\beta^{(t)}$ and residuals $r^{(t)} := y - X\beta^{(t)}$, take

$$\theta = \theta_{\text{res}}^{(t)} := r^{(t)} / \max(\lambda, \|X^{\top} r^{(t)}\|_{\infty})$$

residuals rescaling

- converges to $\hat{\theta}$
- ► $\mathcal{O}(np)$ to compute (= 1 epoch of CD) \hookrightarrow rule of thumb: compute $\theta_{\text{res}}^{(t)}$ and dgap every 10 epochs

³J. Mairal. "Sparse coding for machine learning, image processing and computer vision". PhD thesis. École normale supérieure de Cachan, 2010.

Slower convergence of dual

$$\theta_{\text{res}}^{(t)} = r^{(t)} / \max(\lambda, \|X^{\top} r^{(t)}\|_{\infty})$$

$$\lambda_{\max} = \| X^\top y \|_\infty$$
 is the smallest λ giving $\hat{\beta} = 0$

Slower convergence of dual

Unconstrained dual of Elastic net:

Table of Contents

The Lasso

Exploiting regularity

Sparse GLMs

More solvers speed-up

VAR regularity in residuals

Theorem⁴

Under uniqueness assumption, ISTA/CD achieves sign id.: $\operatorname{sign} \beta_j^{(t)} = \operatorname{sign} \hat{\beta}_j$. Then, Lasso residuals are Vector AutoRegressive (VAR):

$$r^{(t+1)} = Ar^{(t)} + b$$

 \hookrightarrow we could fit a VAR to infer $\lim_{t\to\infty} r^{(t)} = \lambda \hat{\theta}$

We do not know when the sign is identified, n points is high Need a cheaper solution \hookrightarrow extrapolation

⁴M. Massias, A. Gramfort, and J. Salmon. "Celer: a fast solver for the Lasso with dual extrapolation". In: *ICML*. 2018, pp. 3321–3330.

Simple example: extrapolation in 1D

1D autoregressive process:

$$x^{(t)} = ax^{(t-1)} + b \underset{t \to \infty}{\to} x^*$$

we have

$$x^{(t)} - x^* = a(x^{(t-1)} - x^*)$$
$$x^{(t-1)} - x^* = a(x^{(t-2)} - x^*)$$

"Aitken's Δ^2 ": 2 unknowns, so 2 eqs or 3 points $x^{(t)}, x^{(t-1)}, x^{(t-2)}$ are enough to find $x^*!^5$

⁵A. Aitken. "On Bernoulli's numerical solution of algebraic equations". In: *Proceedings of the Royal Society of Edinburgh* 46 (1926), pp. 289–305.

Aitken application

$$\lim_{t \to \infty} \sum_{i=0}^{t} \frac{(-1)^i}{2i+1} = \frac{\pi}{4} = 0.785398...$$

t	$\sum_{i=0}^{t} \frac{(-1)^i}{2i+1}$	Δ^2
0	1.0000	_
1	0.66667	-
2	0.86667	0.7 9167
3	0.7 2381	0.78333
4	0.83492	0.78631
5	0.7 4401	0.78492
6	0.82093	0.78568
7	0.75427	0.78522
8	0.81309	0.78552
9	0.7 6046	0.7853 1

Generalization⁶ to VAR $r^{(t)} \in \mathbb{R}^n$

• fix
$$K = 5$$
 (small)

• keep track of K past residuals $r^{(t)}, \ldots, r^{(t+1-K)}$

►
$$U^{(t)} = [r^{(t+1-K)} - r^{(t-K)}, \dots, r^{(t)} - r^{(t-1)}] \in \mathbb{R}^{n \times K}$$

► solve
$$(U^{(t)})^{\top}U^{(t)}z = \mathbf{1}_K$$

► $c = z/z^{\top}\mathbf{1}_K$

$$r_{\text{accel}}^{(t)} \triangleq \sum_{k=1}^{K} c_k r^{(t+1-k)}$$

$$\theta_{\text{accel}}^{(t)} \triangleq r_{\text{accel}}^{(t)} / \max(\lambda, \|X^{\top} r_{\text{accel}}^{(t)}\|_{\infty})$$

Cost: $\mathcal{O}(K^3 + K^2n + np)$

⁶D. Scieur, A. d'Aspremont, and F. Bach. "Regularized Nonlinear Acceleration". In: NIPS. 2016, pp. 712–720.

Dual extrapolation for the Lasso

Leukemia dataset: p = 7129, n = 72, $\lambda = \lambda_{\max}/10$

VAR after sign identification

Wlog, support of $\hat{\beta}$: $\{1, \dots, S\}$ (other coordinates stay at 0) Consider 1 epoch of CD:

$$\beta^{(t)} \to \beta^{(t+1)}$$

Decomposed into non-zero coordinate updates

$$\beta^{(t)} = \tilde{\beta}^{(0)} \xrightarrow{1} \tilde{\beta}^{(1)} \xrightarrow{2} \dots \xrightarrow{S} \tilde{\beta}^{(S)} = \beta^{(t+1)}$$

 $\tilde{\beta}^{(s)} = \tilde{\beta}^{(s-1)}$ except at coordinate s:

$$\begin{split} \tilde{\beta}_{s}^{(s)} &= \mathrm{ST}\left(\tilde{\beta}_{s}^{(s-1)} + \frac{1}{\|X_{s}\|^{2}}X_{s}^{\top}(y - X\tilde{\beta}^{(s-1)}), \frac{\lambda}{\|X_{s}\|^{2}}\right) \\ &= \tilde{\beta}_{s}^{(s-1)} + \frac{1}{\|X_{s}\|^{2}}X_{s}^{\top}(y - X\tilde{\beta}^{(s-1)}) - \frac{\lambda\operatorname{sign}(\hat{\beta}_{s})}{\|X_{s}\|^{2}} \end{split}$$

VAR after sign identification

$$X\tilde{\beta}^{(s)} = \underbrace{\left(\mathrm{Id}_n - \frac{1}{\|X_s\|^2} X_s X_s^\top\right)}_{A_s \in \mathbb{R}^{n \times n}} X\tilde{\beta}^{(s-1)} + \underbrace{\frac{X_s^\top y - \lambda \operatorname{sign}(\hat{\beta}_s)}{\|X_s\|^2} X_s}_{b_s \in \mathbb{R}^n}$$

So for the full epoch $t \rightarrow t + 1$:

$$\begin{split} X\tilde{\beta}^{(S)} &= A_S X\tilde{\beta}^{(S-1)} + b_S \\ &= A_S A_{S-1} X\tilde{\beta}^{(S-2)} + A_S b_{S-1} + b_S \\ &= \underbrace{A_S \dots A_1}_A X\tilde{\beta}^{(0)} + \underbrace{A_S \dots A_2 b_1 + \dots + A_S b_{S-1} + b_S}_b \\ & \boxed{X\beta^{(t+1)} = A X\beta^{(t)} + b} \end{split}$$

Table of Contents

The Lasso

Exploiting regularity

Sparse GLMs

More solvers speed-up

VAR for other GLMs

sparse Log. reg.
$$\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \sum_{i=1}^n \log \left(1 + \exp(-y_i \beta^\top x_i)\right) + \lambda \|\beta\|_1$$

Multi-task Lasso $\underset{B \in \mathbb{R}^{p \times T}}{\operatorname{arg\,min}} \frac{1}{2} \|Y - XB\|^2 + \lambda \|B\|_{2,1}$

Log. reg. CD update after sign ID:

$$\tilde{\beta}_s^{(s)} = \tilde{\beta}_s^{(s-1)} - \frac{\gamma}{\|X_s\|^2} X_s^\top \nabla F(X \tilde{\beta}^{(s-1)}) - \frac{\gamma}{\|X_s\|^2} \lambda \operatorname{sign}(\hat{\beta}_s)$$

 ∇F not linear in $X\beta$ if F is not a quadratic

Structure for other GLMs

Solution: linearization of ∇F around optimum

$$\nabla F(X\beta) = \nabla F(X\hat{\beta}) + \underbrace{D}_{n \times n, \text{ diagonal}} (X\beta - X\hat{\beta}) + o(X\beta - X\hat{\beta})$$

Leads to asymptotic VAR sequence:

$$D^{\frac{1}{2}}X\tilde{\beta}^{(s)} = \underbrace{\left(\mathrm{Id}_{n} - \frac{\gamma}{\|X_{s}\|^{2}}D^{\frac{1}{2}}X_{s}X_{s}^{\top}D^{-\frac{1}{2}}\right)}_{A_{s}}D^{\frac{1}{2}}X\tilde{\beta}^{(s-1)} + b_{s} + o$$

$$X\beta^{(t+1)} = AX\beta^{(t)} + b + o(X\beta - X\hat{\beta})$$

Applicability to other models

Asymptotic VAR structure is still exploitable⁷

⁷M. Massias et al. "Dual extrapolation for sparse Generalized Linear Models". In: submission to JMLR (2019).

Table of Contents

The Lasso

Exploiting regularity

Sparse GLMs

More solvers speed-up

Speeding-up solvers

Two approaches:

- safe screening^{8,9} (backward approach): remove feature j when it is certified that β̂_j = 0
- ▶ working set¹⁰ (forward approach): focus on j's for which it is very likely that $\hat{\beta}_j \neq 0$.

⁸L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.

⁹A. Bonnefoy et al. "A dynamic screening principle for the lasso". In: EUSIPCO. 2014.

¹⁰T. B. Johnson and C. Guestrin. "Blitz: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML. 2015, pp. 1171–1179.

Key to identifying features

Equicorrelation set¹¹

$$E := \left\{ j \in [p] \, : \, |X_j^\top \hat{\theta}| = 1 \right\} \stackrel{\mathsf{lasso}}{=} \left\{ j \in [p] \, : \, |X_j^\top (y - X \hat{\beta})| = \lambda \right\}$$

• For any primal solution, $j \notin E \implies \hat{\beta}_j = 0$

Idea for speed-up: identify ${\cal E},$ solve only on ${\cal E}$

<u>Practical observation</u>: generally $\#E \ll p$

¹¹R. J. Tibshirani. "The lasso problem and uniqueness". In: Electron. J. Stat. 7 (2013), pp. 1456–1490.

Duality again: gap screening

Cannot know in advance
$$E = \left\{ j \in [p] \, : \, |X_j^ op \hat{ heta}| = 1
ight\}$$

Good proxy: find a region $\mathcal{C} \subset \mathbb{R}^n$ containing $\hat{\theta}$

$$\sup_{\theta \in \mathcal{C}} |X_j^\top \theta| < 1 \Rightarrow |X_j^\top \hat{\theta}| < 1 \Rightarrow j \notin E \Rightarrow \hat{\beta}_j = 0$$

 $^{^{12}\}mathsf{E}.$ Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.

Duality again: gap screening

Cannot know in advance
$$E = \left\{ j \in [p] \, : \, |X_j^ op \hat{ heta}| = 1
ight\}$$

Good proxy: find a region $\mathcal{C} \subset \mathbb{R}^n$ containing $\hat{\theta}$

$$\sup_{\theta \in \mathcal{C}} |X_j^\top \theta| < 1 \Rightarrow |X_j^\top \hat{\theta}| < 1 \Rightarrow j \notin E \Rightarrow \hat{\beta}_j = 0$$

Gap Safe screening rule¹²: C is a ball of radius $\rho = \sqrt{\frac{2}{\lambda^2}} dgap(\beta, \theta)$ centered at $\theta \in \Delta_X$

$$\forall (\beta, \theta) \in \mathbb{R}^p \times \Delta_X, \quad |X_j^\top \theta| < 1 - ||X_j|| \rho \Rightarrow \hat{\beta}_j = 0$$

¹²E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.

Better Gap Safe screening¹³

$$\forall \theta \in \Delta_X, |X_j^\top \theta| < 1 - \|X_j\| \sqrt{\frac{2}{\lambda^2}} \mathsf{dgap}(\beta, \theta) \Rightarrow \hat{\beta}_j = 0$$

better dual point \Rightarrow better safe screening

Finance dataset: $p=1.5 imes 10^6, n=1.5 imes 10^4$, $\lambda=\lambda_{
m max}/5$

¹³O. Fercoq, A. Gramfort, and J. Salmon. "Mind the duality gap: safer rules for the lasso". In: *ICML*. 2015, pp. 333–342.

Working sets

Screening can be used aggressively to define WS, therefore a **better dual point also helps**:

news20 dataset, coarse and fine Lasso paths computation

Online code

Fast & pip-installable Cython code, continuous integration, bug tracker, code coverage

Figures & doc at https://mathurinm.github.io/celer

2 from celer import Lasso, LassoCV

From 10,000 s to 50 s for cross-validation on Finance

Conclusion

Duality matters at several levels for sparse GLMs:

- stopping criterion
- safe feature identification (screening or working set)

Lasso: Exploiting the VAR structure of $X\beta^{(t)} \hookrightarrow$ better dual

Generalization

- ▶ any twice differentiable separable (samples) data-fitting term
- group penalties (multitask Lasso)

with proof of asymptotic VAR structure & extrapolation is useful

Code: https://github.com/mathurinm/celer Paper: https://arxiv.org/abs/1907.05830

References I

- Aitken, A. "On Bernoulli's numerical solution of algebraic equations". In: *Proceedings of the Royal Society of Edinburgh* 46 (1926), pp. 289–305.
- Bonnefoy, A. et al. "A dynamic screening principle for the lasso". In: EUSIPCO. 2014.
- Chen, S. S. and D. L. Donoho. "Atomic decomposition by basis pursuit". In: SPIE. 1995.
- El Ghaoui, L., V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: *J. Pacific Optim.* 8.4 (2012), pp. 667–698.
- Fercoq, O., A. Gramfort, and J. Salmon. "Mind the duality gap: safer rules for the lasso". In: *ICML*. 2015, pp. 333–342.
- Johnson, T. B. and C. Guestrin. "Blitz: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML. 2015, pp. 1171–1179.

References II

- Mairal, J. "Sparse coding for machine learning, image processing and computer vision". PhD thesis. École normale supérieure de Cachan, 2010.
- Massias, M., A. Gramfort, and J. Salmon. "Celer: a fast solver for the Lasso with dual extrapolation". In: *ICML*. 2018, pp. 3321–3330.
- Massias, M. et al. "Dual extrapolation for sparse Generalized Linear Models". In: *submission to JMLR* (2019).
- Ndiaye, E. et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.
- Scieur, D., A. d'Aspremont, and F. Bach. "Regularized Nonlinear Acceleration". In: NIPS. 2016, pp. 712–720.
- Tibshirani, R. "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1 (1996), pp. 267–288.

References III

Tibshirani, R. J. "The lasso problem and uniqueness". In: Electron. J. Stat. 7 (2013), pp. 1456–1490.

Intuition for extrapolation

Take a VAR sequence $x^{(t)} \rightarrow x^*$:

$$x^{(t+1)} - x^* = A(x^{(t)} - x^*)$$

Cayley-Hamilton: find coefficients¹⁴ s.t. $\sum_{k=0}^{n} a_k A^k = 0$

$$\sum_{k=0}^{n} a_k (x^{(t+k+1)} - x^*) = \sum_{k=0}^{n} a_k A^k (x^{(t)} - x^*) = 0$$
$$\hookrightarrow x^* \in \text{Span} (x^{(t)}, \dots, x^{(t+n+1)})$$

 \hookrightarrow approximate x^* under the form $x_{\mathrm{acc}} = \sum_{k=1}^{K} c_k x^{(t+k)}$

minimizing $\|x_{\mathrm{acc}} - (Ax_{\mathrm{acc}} + b)\|$ leads to the previous formulas

$$^{14}\mathrm{wlog,}$$
 assume $\sum\nolimits_{0}^{n}a_{k}=1$ if $\|A\|<1$

Aitken's rule

For a converging sequence $(r_n)_{n\in\mathbb{N}}$, Aitken's rule replaces r_{n+1} by

$$\Delta^2 = r_n + \frac{1}{\frac{1}{r_{n+1} - r_n} - \frac{1}{r_n - r_{n-1}}}$$