
Fast, flexible and reproducible optimization for ML

Mathurin Massias

OCKHAM

CEP INRIA, 16/06/23

Early motivation: linear inverse problems

▶ observe magnetoelectric field outside the scalp (100 sensors)
▶ reconstruct cerebral activity inside the brain (10,000 locations)

n = 100 sensors

p = 10,000 locations

▶ linear relationship by Maxwell equations

Still working on neuroscience! PhD of Can Pouliquen w. P. Gonçalves, T. Vayer
2

General setup: overparametrized linear models

Inverse problem: observe y ≈ F (x), infer x.
Examples: neural source identification, image denoising, etc.

Linear: F (x) = Ax.
ML example: linear regression

How to find x? Introduce data-fidelity divergence D and solve:

min
x

D(y, F (x))

Most popular divergence: 1
2∥y − F (x)∥2 (least squares)

Big issue: in general y much smaller than x (overparametrization):
▶ infinitely many solutions
▶ sensitivity to noise in observations y

3

Regularization

Solution to stabilize: introduce regularizer R, solve

min
x

D(y, F (x)) +R(x)

↪→ F (x) still close to y but R penalizes overcomplex solutions:
▶ 1

2∥ · ∥22 penalizes large norm
▶ ∥∇x∥22: penalizes high frequency signals/images

4

Sparse regularization

Since the 2000s, huge popularity for ℓ1 regularization:
▶ R(x) =

∑
j |xj |

▶ convex
▶ best approximation of the ℓ0-pseudonorm
▶ induces sparsity in recovered x

Can be solved efficiently with 1st order (gradient-based) methods called proximal
methods, e.g. ISTA/proximal gradient descent.

ℓ1-specific solvers: can solve problems with millions of variables in a few seconds

5

Non convex penalties

Much better penalties: provide sparser solutions with same predictive power

Issue : no fast algorithm to solve them. Current limits:
▶ specific to quadratic data fidelity
▶ only for convex penalties (rely on convex duality)

6

Introducing skglm

“Beyond L1: Faster and Better Sparse Models with skglm”, NeurIPS 2022

For generalized linear models, the reference Python package scikit-learn suffered
from
▶ slow solvers
▶ complex development (relying on C/Python hybrid called Cython)
▶ lack of functionalities

skglm’s solution is two-fold
▶ a fast general purpose algorithm
▶ a modular implementation, with sklearn API

7

A new algorithm for sparse non convex problems

min
x

D(y,Ax) +
∑
j

ϕj(xj)

2 components:
▶ a working set solver that identifies important variables
▶ a nonlinear acceleration procedure called Anderson acceleration, combined with

coordinate descent
CD - Working sets and Acceleration

CD - Working sets

CD - Acceleration

CD

0 5 10
Time (s)

100

10−10

ne
w

s2
0

λmax/10

0 20 40
Time (s)

λmax/100

0 20 40
Time (s)

λmax/1000

8

Solver details

Anderson acceleration: procedure to accelerate the convergence of fixed point iterations

xk+1 = Txk + b

Principle:
▶ perform K regular iterations x1, . . . , xK

▶ compute K scalar coefficients c1, . . . , ck from it (solve K ×K linear system)
▶ restart algorithm from

∑K
k=1 ckx

k

Thm: coordinate descent iteration lead to approximate fixed point iterations and thus
are amenable to Anderson acceleration

9

Implementation choices

We introduce a flexible design, easy to handle new penalties and new datafits

Code flexibility mainly due to numba: Just-In-Time compilation of pure python code
▶ no performance loss compared to C++/Cython
▶ much easier code writing
▶ enable modular, object-oriented design

0 0.1 0.2 0.3

1e−8

1e−4

1e+0

10

skglm flexibility

Organization around Solver, Datafit and Penalty.

This made it possible to implement easily:

▶ 12 datafits (regression, classification, robustness)
▶ 15 penalties (non convex, group, etc)
▶ 4 state-of-the-art solvers

Most new classes take 50 lines of code

11

Survival analysis

Recent success story: x500 speedup for survival analysis model (Cox model)

↪→ planned integration in the lifelines package (12 k downloads/day)

12

Benchopt: making your benchmarks easy and better

Bench pt
“Benchopt: Reproducible, efficient and collaborative optimization benchmarks”, NeurIPS 2022.

13

Benchmarking algorithms today is a pain

Needed: Machine Learning research relies on numerical validation.

Pain points of a benchmark:
▶ competitors’ methods do not work out of the box.
▶ re-code methods and tools to integrate a new method.
▶ hard to extend with new settings.

all of this started from scratch by every submission!

Benchopt makes this easier by producing open, reproducible, & extendable benchmarks

14

How does Benchopt do it?

Benchopt is a framework to organize and run benchmarks:
▶ one repository per benchmark
▶ one base open source Python CLI to run them

3 components: Objective, Dataset, Solver

.PDF

.HTML

.CSV

15

Structure of a benchmark

benchmark/

objective.py

datasets/

dataset1.py

dataset2.py

solvers/

solver1.py

solver2.py

Modular & extendable

New solver? add a file
New dataset? add a file
New metric? modify objective

16

Interactive results exploration

17

Benchopt makes your life easy

▶ build on previous benchmarks
▶ use solvers in Python, R, Julia, binaries...
▶ monitor any metric you want altogether (test/train loss, ...)
▶ add parameters to solvers
▶ share and publish HTML results
▶ run all benchmarks in parallel
▶ cache results
▶ and much more!

18

Existing benchmarks

Examples of existing benchmarks:
▶ Resnet18
▶ Lasso
▶ ICA
▶ Logistic regression

▶ Total Variation
▶ Ordinary Least Squares
▶ Non convex sparse regression
▶ linear SVM

Start yours with https://github.com/benchopt/template_benchmark!

19

https://github.com/benchopt/template_benchmark

Deep learning benchmark

▶ image classification with resnet18
▶ various optimization strategies
▶ compare pytorch and tensorflow

▶ publish reproducible SOTA for baselines

Best Adam

SGD + data aug. + momentum

Lookahead

Vanilla SGD

SGD + data aug. + momentum + cosine LR sched.

SGD + data aug.

Best SGD

Best SGD (TF/Keras)

0 1000 2000 3000

Time (s)

5

10

15

20

T
es

t
er

ro
r

(%
)

CIFAR-10

0 2000 4000

Time (s)

4

6

8
SVHN

0 1000 2000

Time (s)

0

1

2

3
MNIST

https://github.com/benchopt/benchmark_resnet_classif/ 20

https://github.com/benchopt/benchmark_resnet_classif/

