
Journal of Machine Learning Research 23 (2023) 1-5 Submitted 12/23; Revised XXX/24; Published XXX/24

skglm: improving scikit-learn for regularized Generalized
Linear Models

Badr Moufad1 badr.moufad@inria.fr
Pierre-Antoine Bannier pierreantoine.bannier@gmail.com
Quentin Bertrand3 quentin.bertrand@mila.quebec
Quentin Klopfenstein2 quentin.klopfenstein@uni.lu
Mathurin Massias1 mathurin.massias@inria.fr

1 Univ Lyon, Inria, CNRS, ENS de Lyon, UCB Lyon 1, LIP UMR 5668, F-69342, Lyon, France
2 University of Luxembourg, LCSB, Esch-sur-Alzette, Luxembourg
3 Mila & UdeM, Canada

Editor: XXX

Abstract

We introduce skglm, an open-source Python package for regularized Generalized Linear
Models. By its composable nature, it supports combining datafits, penalties, and solvers
to fit a wide range of models, many of them not included in scikit-learn (e.g. Group Lasso
and variants). It uses state-of-the-art algorithms to easily solve problems involving high-
dimensional datasets, providing large speed-ups compared to existing implementations.
It is fully compliant with the scikit-learn API and acts as a drop-in replacement for its
estimators. Finally, it abides by the standards of open source development and is integrated
in the scikit-learn-contrib GitHub organization.

Keywords: generalized linear models, regularization, high-dimensional data, scikit-learn

1 Introduction

Generalized Linear Models (GLMs) are simple yet powerful models. They are highly inter-
pretable as they assume the output is a function of a linear combination of features. They
are often coupled with a regularization term endowing their coefficients with additional
properties such as sparsity or group structure. From an optimization perspective, learning
these coefficients requires solving an optimization problem with a composite objective, the
sum of a datafit and a penalty: the datafit embodies the model specifications whereas the
penalty enforces a given prior on the solution.

There exists a wealth of datafits and penalties covering a broad range of applications such
as inverse problems in neuroscience (Strohmeier et al., 2016) or survival analysis (Efron,
1977) and having tailored properties, for instance robustness to outliers (Barron, 2019)
or bias reduction (Fan and Li, 2001). Many existing packages offer implementations of
regularized GLMs. For the Python machine learning community, scikit-learn (Pedregosa
et al., 2011) is the defacto choice as it exposes an efficient implementation of these models
through a user-friendly API easy to use and adopt even by non-experts.

©2023 Moufad, Bannier, Bertrand, Klopfenstein, Massias.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0000.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0000.html

Moufad, Bannier, Bertrand, Klopfenstein and Massias

Using skglm estimator

from skglm.estimators import MCPRegression

estimator = MCPRegression()

estimator.fit(X, y)

Using composition

from skglm.datafits import Quadratic

from skglm.penalties import MCPenalty

from skglm.solvers import AndersonCD

solver = AndersonCD()

solver.solve(X, y, Quadratic(), MCPenalty(1,3))

Figure 1: Code snippets for solving MCP regression on design matrix X, and output y.

However, several challenges impede the prevalence of off-the-shelf regularized GLMs and
prevent the community from leveraging them. First, standard packages support a limited
number of GLMs, as they have a non-modular design that makes handling new datafits and
penalties time-consuming1. Second, some reference packages may fall behind in terms of
speed and efficiency, as the high implementation cost of a new method prevents them from
leveraging the most recent research advances2.

We introduce skglm, a Python package specifically designed to solve regularized GLMs.
It supports many models, including those missing from standard libraries, and most impor-
tantly, can be easily extended to new penalties, datafits or solvers. It implements state-
of-the-art algorithms that enable it to efficiently tackle high-dimensional datasets, making
it the fastest in the current ecosystem. Finally, it complies with software development
standards hence promoting its persistence and encouraging its collaborative development.

2 Package implementation

Design choices Despite the diversity of regularized GLMs, from an optimization point of
view, they all reduce to solving a composite problem. The main principle of skglm is to view
these models as a solver that minimizes a combination of a datafit and a penalty. With that,
skglm treats solvers, datafits and penalties as three separate components and combines them
to solve regularized GLMs. Hence, it achieves high flexibility and extensibility by leveraging
reusable independent components.

In terms of code, a solver is an object implementing a solve method and that has two
fields to specify the datafit and the penalty required attributes. Once a datafit implements
these attributes, it can be used by the solver and mixed with any other penalty that checks
the required penalty attributes. So far, skglm supports 12 datafits, 16 penalties, and 8
solvers. With these components, it can solve hundreds of different problems (Table 1).

High modularity and extensiblity As illustrated in Figure 1 on the right-hand snippet,
a problem can be solved by initializing a solver then calling its solve method with the
desired datafit and penalty. This implies that adding support for new problems is synonym
to implementing a new datafit, penalty or solver and mixing it with existing components.

1. See for example this 6 year old pull request to make scikit-learn solvers more extensible: https://

github.com/scikit-learn/scikit-learn/pull/10745

2. An issue that highlights a lack of performance in lifelines, which is a reference package for survival
analysis: https://github.com/CamDavidsonPilon/lifelines/issues/1531

2

https://github.com/scikit-learn/scikit-learn/pull/10745
https://github.com/scikit-learn/scikit-learn/pull/10745
https://github.com/CamDavidsonPilon/lifelines/issues/1531

skglm: improving scikit-learn for regularized Generalized Linear Models

Table 1: skglm supported datafits and penalties, as of v0.3.1 (December 2023). Any com-
bination of a datafit and a penalty within the subtables is valid.

Single task

Datafit Penalty

Quadratic L1
Logistic L1 plus L2

QuadraticSVC WeightedL1
Huber MCPenalty
Poisson WeightedMCPenalty
Gamma SCAD
Cox IndicatorBox

Pinball L0 5
SqrtQuadratic L2 3

LogSumPenalty
PositiveConstraint

SLOPE

Group

Datafit Penalty

QuadraticGroup WeightedGroupL2
LogisticGroup

Multitask

Datafit Penalty

QuadraticMultiTask L2 05
BlockMCPenalty

BlockSCAD

Fast algorithms skglm uses state-of-the-art algorithm to solve regularized GLMs. It is
built around a well-founded theory that takes advantage of the properties of problems.

In particular, for sparse GLMs, skglm leverages the small support of the solution wherein
few of the coefficients are non-zero. skglm builds a working set that progressively approaches
the support hence reducing considerably the optimization variables (Bertrand et al., 2022).
For non quadratic datafit, taking into account the curvature through the Hessian is critical,
and skglm implements a fast Prox-Newton solver.

Examples of other solvers include a wrapper for Scipy’s LBFGS solver, and a Primal-
Dual solver for non-smooth datafits used with non-smooth penalties.

Finally, thanks to the flexibility of the design, it is possible to add new solvers to account
for problems specificities while leveraging previously implemented datafits and penalties.

Figure 2 showcases the speed of skglm on three benchmarks3. For transparent and
reproducible benchmarks, we used benchopt (Moreau et al., 2022).

Underlining technologies skglm is entirely written in Python. It is a design choice
in order to make code accessible and avoid the often high development time costs that
result from relying on extensions, for instance written in Cython (Behnel et al., 2010).
Although written completely in Python, skglm does not sacrifice performance and can
achieve speed comparable to those achieved with extensions. skglm relies on Numpy (Harris
et al., 2020) and Scipy (Virtanen et al., 2020) for dense and sparse arrays operations.
Algorithm specific parts that require intensive computation are isolated and JIT-compiled
by Numba (Lam et al., 2015). Similarly, objects that perform intensive computations, namely

3. Reproduce and extend the benchmarks here https://github.com/benchopt/benchmark_lasso for Lasso,
https://github.com/benchopt/benchmark_cox for sparse Cox, and https://github.com/benchopt/

benchmark_group_lasso for Group Lasso

3

https://github.com/benchopt/benchmark_lasso
https://github.com/benchopt/benchmark_cox
https://github.com/benchopt/benchmark_group_lasso
https://github.com/benchopt/benchmark_group_lasso

Moufad, Bannier, Bertrand, Klopfenstein and Massias

0 10 20

10−6

10−3

100

S
u

b
op

ti
m

al
it

y
Lasso

0.0 0.3 0.6

Time in seconds

Sparse Cox

0 10 20

Group Lasso

skglm (our)

scikit-survival

scikit-learn

lifelines

glum

celer

yngvem

Figure 2: Timing comparison on three problems: Lasso, Sparse Cox, and Group Lasso;
on the datasets: MEG, Breast-Cancer, and Drug Potency. The benchmark was
performed using a laptop with specifications: CPU 12th Gen Intel® Core™ i7-
12700H @ 2.7GHz, 20 cores, 32GB of RAM.

datafits and penalties, are decorated by Numba’s jitclass. Finally, skglm estimators are
fully-compliant with scikit-learn: they inherit from scikit-learn’s base classes and
pass the test function sklearn.utils.estimators checks.check estimator.

3 Community

skglm is an open-source package licensed under BSD 3-Clause and hosted on GitHub4. It is
part of the scikit-learn-contrib GitHub organization, an organization created and managed
by scikit-learn core developers that gathers high quality scikit-learn compatible projects.
Since the first release of skglm in May 2022, the package has gathered 100 starts, 20 forks,
10 contributors, and more than 5000 downloads per month5.

skglm abides by the software development standards. It features meticulous testing
suits comprising around 300 unit and integration tests. Besides, it has detailed and com-
prehensive documentation6 with a gallery of hands-on examples and tutorials for new users.
The documentation has two version: stable for the released code and dev for the one under
development; both continuously built and deployed throughout skglm development cycle.
Finally, to ensure the smooth onboarding of new contributors, the project has contribution
guidelines as well as PR and issues templates.

4 Conclusion

skglm is an ongoing effort. It has proven its great potential in terms of speed and extensibil-
ity. With every new release, new scikit-learn compatible estimators are added, new datafits
and penalties are supported, and state-of-art solvers are implemented.

4. Repository of skglm https://github.com/scikit-learn-contrib/skglm

5. Download statistics https://www.pepy.tech/projects/skglm
6. Documentation of skglm https://contrib.scikit-learn.org/skglm/

4

https://github.com/scikit-learn-contrib/skglm
https://www.pepy.tech/projects/skglm
https://contrib.scikit-learn.org/skglm/

skglm: improving scikit-learn for regularized Generalized Linear Models

References

Jonathan T Barron. A general and adaptive robust loss function. In Proceedings of the
IEEE CVF, 2019.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and
Kurt Smith. Cython: The best of both worlds. CiSE, 2010.

Quentin Bertrand, Quentin Klopfenstein, Pierre-Antoine Bannier, Gauthier Gidel, and
Mathurin Massias. Beyond l1: Faster and better sparse models with skglm. NeurIPS,
2022.

Bradley Efron. The efficiency of cox’s likelihood function for censored data. JASA, 1977.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. JASA, 2001.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett,
Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 2020.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of LLVM-HPC, 2015.

Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine
Bannier, Benjamin Charlier, Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cas-
sio F. Dantas, Quentin Klopfenstein, Johan Larsson, En Lai, Tanguy Lefort, Benoit
Malézieux, Badr Moufad, Binh T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi,
Joseph Salmon, and Samuel Vaiter. Benchopt: Reproducible, efficient and collaborative
optimization benchmarks. In NeurIPS, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
JMLR, 2011.

Daniel Strohmeier, Yousra Bekhti, Jens Haueisen, and Alexandre Gramfort. The itera-
tive reweighted mixed-norm estimate for spatio-temporal meg/eeg source reconstruction.
IEEE TMI, 2016.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 2020.

5

	Introduction
	Package implementation
	Community
	Conclusion

