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The impact of sparsity

Seminal convex estimator for joint regression and feature selection: Lasso

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖2 + λ ‖β‖1

Key property if λ not too small: #{j : β̂j 6= 0} � p, by nonsmoothness of ‖·‖1

Statisticians love it (Candès et al., 2006; Donoho, 2006; Hastie et al., 2015):
I provable recovery guarantees if real model is sparse + good properties on X
I basically same error rate as least squares but handles p� n

What about computing the Lasso?
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Computing the Lasso estimator

Initially a hard problem (non-smoothness), but optimizers now love it too.

min
β∈Rp

f(β) + g(β) proxg(x) = argmin
y

1

2
‖x− y‖2 + g(y)

I “smooth + proximable” problem, amenable to proximal splitting methods (Combettes
and Wajs, 2005) e.g. FISTA (Beck and Teboulle, 2009)

βk+1 = proxτg(β
k − τ∇f(βk))

I from curse to blessing of non-smoothness (Iutzeler and Malick, 2020): leverage
sparsity of iterates with screening or working sets (Ndiaye et al., 2017)

I even faster algorithm: coordinate descent
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(Proximal) coordinate descent

I Do proximal gradient descent steps on one coordinate at a time
I Should not converge... but does for smooth functions, smooth + separable

Lasso is the prototypical problem solvable by coordinate descent!

argmin
β∈Rp

1

2
‖y −Xβ‖2 + λ

p∑
j=1

|βj |
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CD for Lasso can be quite fast (Bertrand and Massias, 2021)

GD

CD

GD - inertial

CD - inertial

CD - ours
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Main reason for success of CD

I One full update of β not more costly than one gradient in general: O(np)
I Much larger stepsizes than GD (1/Lj vs 1/L, coordinatewise vs global gradient

Lipschitz constant)
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In pratice, CD can be at least one order of magnitude faster than FISTA
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Impact on practitioners

I With e�cient implementations of Lasso solvers such as Celer (Massias et al., 2020) it
is possible to solve problems with millions of variables in a few seconds

I Interpretable models are popular among practitioners
I Large scale applications in biology, neuroscience, geophysics... (Muir and Zhan, 2021;

Kim et al., 2021; Reidenbach et al., 2021)

So are we done? Why this talk?
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Lasso has limitations

I Amplitude bias (Zhang and Huang, 2008)

I Di�culty to deal with correlated coe�cients (Zou and Hastie, 2005)

I Many false positive, false positive occur even for strong regularization (Su et al., 2017)

Potential solution: non convex penalties (`q , MCP, SCAD, log) for which e�cient solvers
such as skglm also exist (Bertrand et al., 2022). . .

... but convexity is lost and so far you’re never sure of what you get in the end.

We’ll take the convex road!
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A convex alternative: SLOPE

Sorted L-One Penalized Estimator, based on the sorted `1 norm (Bogdan et al., 2013; Zeng
and Figueiredo, 2014):

λ1 ≥ . . . ≥ λp ≥ 0

J(β) =

p∑
j=1

λj |β(j)| =
p∑
j=1

λ(j)− |βj |

where (·) reorders β by descending magnitude ((·)− its inverse):

|β(1)| ≥ . . . ≥ |β(p)|

↪→ largest coe�cients are more penalized

Generalization of two peculiar instances:
I λ1 = . . . = λp → Lasso penalty
I λ2 = . . . = λp = 0→ `∞ penalty
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SLOPE properties

I convex (pointwise supremum of a�ne hence convex functions)
I non di�erentiable along axes AND when coe�cients are equal in magnitude
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SLOPE solves some of the Lasso’s problem

I false discovery rate control (Bogdan et al., 2015; Kos and Bogdan, 2020)

I coe�cient clustering (Figueiredo and Nowak, 2016; Schneider and Tardivel, 2020):
|βj | takes m distinct values c1 > c2 > · · · > cm ≥ 0, on sets of indices C1, C2, . . . , Cm

I sparsity and ordering patterns recovery (Bogdan et al., 2022)
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The Optimizer’s point of view

The prox of SLOPE is (surprisingly?) known, based on isotonic regression
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Isotonic regression

↪→ ISTA, FISTA can be used

Could we still use proximal CD?
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CD cannot be applied for lack of separability

0.0 0.2 0.4
β1

0.0

0.1

0.2

0.3

0.4

β
2

0.30
0.35

P
(β

)

0.30 0.35
P (β)

CD can only move along the dashed line and thus stays there
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Key issue: clusters are not known

If clusters C1, . . . , Cm∗ of the solution β∗ are known, the penalty becomes separable
(Dupuis and Tardivel, 2022) and one can solve:

min
z∈Rm∗

(
1

2

∥∥∥y −X m∗∑
i=1

∑
j∈C∗i

zi sign(β
∗
j )ej

∥∥∥2 + m∗∑
i=1

|zi|
∑
j∈C∗i

λj

)
.

Idea: alternate between cluster identification steps and fast CD step
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Why relying on PGD for cluster identification?

Def: J is said to be partly smooth at x relative to a setM containing x if:
1. M is a C2-manifold around x and J restricted toM is C2 around x.
2. The tangent space ofM at x is the orthogonal of the parallel space of ∂J(x).
3. ∂J is continuous at x relative toM.

Prop: The SLOPE is partly smooth at any x w.r.t.M = “vectors with same support, signs
and clusters as x” (linear manifold)

(links with polyhedral norms (Vaiter et al., 2017))

↪→ PGD identifies the clusters in a finite number of iterations (Liang et al., 2014)
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Minimization on a single cluster

When we update the value taken by β on its cluster Ck we let:

βi(z) =

{
sign(βi)z , if i ∈ Ck ,
βi , otherwise .

Minimizing the objective in this direction amounts to solving the following
one-dimensional problem:

min
z∈R

(
G(z) =

1

2
‖y −Xβ(z)‖2 +H(z)

)
,

where
H(z) = |z|

∑
j∈Ck

λ(j)−z +
∑
j /∈Ck

|βj |λ(j)−z

is the partial sorted `1 norm with respect to the k-th cluster and λ(j)−z means that the
inverse sorting permutation (j)−z is defined with respect to β(z).
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The partial sorted `1 norm
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How do we solve the minimization for one cluster?

1D minimization pb, optimality condition:

∀δ ∈ {−1, 1}, G′(z; δ) ≥ 0

G′(z; δ) = δ
∑
j∈Ck

X>:j (Xβ(z)− y) +H ′(z; δ)

and H is the partial sorted L1 norm.
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Expression for the directional derivative

Thm: Let c\k be the set containing all elements of c except the k-th one:
c\k = {c1, . . . ck−1, ck+1, . . . , cm}. Let εc > 0 such that

εc <
∣∣ci − cj∣∣, ∀ i 6= j and εc < cm if cm 6= 0 .

The directional derivative of the partial sorted `1 norm with respect to the k-th cluster,
H , in the direction δ is

H ′(z; δ) =



∑
j∈C(εc)

λ(j)−εc
if z = 0 ,

sign(z)δ
∑

j∈C(z+εcδ)

λ(j)−z+εcδ
if |z| ∈ c\k \ {0},

sign(z)δ
∑

j∈C(z)

λ(j)−z otherwise .
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Solution of update given by the “SLOPE thresholding operator”

Thm: argminz G(z) = T (ck ‖x̃‖2 − x̃T (Xβ − y); ‖x‖2 , c\k, λ)
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The full algorithm

input: X ∈ Rn×p, y ∈ Rn, λ ∈ {Rp : λ1 ≥ λ2 ≥ · · · > 0}, v ∈ N, β ∈ Rp
1 for t← 0, 1, . . . do
2 if t mod v = 0 then
3 β ← proxJ/‖X‖22

(
β − 1

‖X‖22
XT (Xβ − y)

)
4 Update c, C
5 else
6 k ← 1
7 while k ≤ |C| do
8 x̃k ← XCk sign(βCk)

9 z ← T (ck ‖x̃‖2 − x̃T (Xβ − y); ‖x‖2 , c\k, λ)
10 βCk ← z sign(βCk)
11 Update c, C
12 k ← k + 1

13 return β
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Benchmarks
oracle CD
hybrid (ours)
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Part II: easier and better benchmarks with Benchopt

Bench pt
“Benchopt: Reproducible, e�cient and collaborative optimization benchmarks”, NeurIPS 2022.

https://benchopt.github.io/
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Benchmarking algorithms is a pain

Machine Learning research relies on numerical validation.

Pain points of a benchmark:
I competitors’ methods do not work out of the box.
I re-code methods and tools to integrate a new method.
I hard to extend with new settings.

all of this started from scratch by every submission!

Benchopt produces open, reproducible, extendable benchmarks
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How does Benchopt do it?

Benchopt is a framework to organize and run benchmarks:
I one repository per benchmark
I one base open source Python CLI to run them

3 components: Objective, Dataset, Solver

.PDF

.HTML

.CSV
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Structure of a benchmark

benchmark/

objective.py

datasets/

dataset1.py

dataset2.py

solvers/

solver1.py

solver2.py

Modular & extendable

New solver? add a file
New dataset? add a file
New metric? modify objective
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Interactive results exploration
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Benchopt makes your life easy

I build on previous benchmarks
I use solvers in Python, R, Julia, binaries...
I monitor any metric you want altogether (test/train loss, ...)
I add parameters to solvers
I share and publish HTML results
I run all benchmarks in parallel
I cache results
I and much more!
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Existing benchmarks

Examples of existing benchmarks:
I Resnet18
I Lasso
I Slope
I MCP
I Logistic regression

I ICA
I Total Variation
I Ordinary Least Squares
I Non convex sparse regression
I linear SVM

Start yours with https://github.com/benchopt/template_benchmark!
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Example: Resnet benchmark

I image classification with resnet18
I various optimization strategies
I compare pytorch and tensorflow

I publish reproducible SOTA for baselines

Best Adam

SGD + data aug. + momentum

Lookahead

Vanilla SGD

SGD + data aug. + momentum + cosine LR sched.

SGD + data aug.

Best SGD

Best SGD (TF/Keras)
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https://github.com/benchopt/benchmark_resnet_classif/


E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Transactions on information theory, 52(2):
489–509, 2006.

D. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306, 2006.
Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity.
Monographs on statistics and applied probability, 143:143, 2015.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale modeling & simulation, 4(4):1168–1200, 2005.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

F. Iutzeler and J. Malick. Nonsmoothness in machine learning: specific structure, proximal
identification, and applications. Set-Valued and Variational Analysis, 28(4):661–678, 2020.

Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. Gap safe screening rules
for sparsity enforcing penalties. The Journal of Machine Learning Research, 18(1):4671–4703, 2017.

Q. Bertrand and M. Massias. Anderson acceleration of coordinate descent. In AISTATS, pages
1288–1296. PMLR, 2021.

Mathurin Massias, Samuel Vaiter, Alexandre Gramfort, and Joseph Salmon. Dual extrapolation for
sparse generalized linear models. Journal of Machine Learning Research, 21(234):1–33, 2020.

31



J. B. Muir and Z. Zhan. Seismic wavefield reconstruction using a pre-conditioned wavelet–curvelet
compressive sensing approach. Geophysical Journal International, 227(1):303–315, 2021.

Y. J. Kim, N. Brackbill, E. Batty, J. Lee, C. Mitelut, W. Tong, EJ Chichilnisky, and L. Paninski. Nonlinear
decoding of natural images from large-scale primate retinal ganglion recordings. Neural
Computation, 33(7):1719–1750, 2021.

D. A. Reidenbach, A. Lal, L. Slim, O. Mosafi, and J. Israeli. Gepsi: A python library to simulate gwas
phenotype data. bioRxiv, 2021.

Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-dimensional
linear regression. The Annals of Statistics, 36(4):1567–1594, 2008.

H. Zou and T. J. Hastie. Regularization and variable selection via the elastic net. 67(2):301–320,
2005.

Weijie Su, Małgorzata Bogdan, and Emmanuel Candes. False discoveries occur early on the lasso
path. The Annals of statistics, pages 2133–2150, 2017.

Quentin Bertrand, Quentin Klopfenstein, Pierre-Antoine Bannier, Gauthier Gidel, and Mathurin
Massias. Beyond l1: Faster and better sparse models with skglm. arXiv preprint arXiv:2204.07826,
2022.

Małgorzata Bogdan, Ewout van den Berg, Weijie Su, and Emmanuel Candès. Statistical estimation
and testing via the sorted L1 norm. 2013.

32



Xiangrong Zeng and Mario Figueiredo. The ordered weighted `1 norm: Atomic formulation,
projections, and algorithms, 2014.

Małgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel Candès. SLOPE -
adaptive variable selection via convex optimization. 9(3):1103–1140, 2015.

Michał Kos and Małgorzata Bogdan. On the asymptotic properties of SLOPE. 82(2):499–532, 2020.
Mario Figueiredo and Robert Nowak. Ordered weighted L1 regularized regression with strongly

correlated covariates: Theoretical aspects. In AISTATS, pages 930–938, 2016.
Ulrike Schneider and Patrick Tardivel. The Geometry of Uniqueness, sparsity and clustering in

penalized estimation, 2020. URL http://arxiv.org/abs/2004.09106.
Małgorzata Bogdan, Xavier Dupuis, Piotr Graczyk, Bartosz Kołodziejek, Tomasz Skalski, Patrick
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Definition of the SLOPE thresholding operator

Define S(x) =
∑
j∈C(x) λ(j)−x and let

T (γ;ω, c, λ) =



0 if |γ| ≤ S(εc),
sign(γ)ci if ωci + S(ci − εc)

≤ |γ| ≤
ωci + S(ci + εc),

sign(γ)
ω

(
|γ| − S(ci + εc)

)
if ωci + S(ci + εc)

< |γ| <
ωci−1 + S(ci−1 − εc),

sign(γ)
ω

(
|γ| − S(c1 + εc)

)
if |γ| ≥ ωc1 + S(c1 + εc).

with εc such that εc <
∣∣ci − cj∣∣, ∀ i 6= j and εc < cm if cm 6= 0 .

Let x̃ = XCk sign(βCk) and r = y −Xβ. Then

T
(
ck ‖x̃‖2 + x̃T r; ‖x‖2 , c\k, λ

)
= argmin

z∈R
G(z) .
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