
M2 internship offer: Improving sparse penalties with non

convexity and coefficient clustering

Supervision: Emmanuel Soubies, IRIT, CNRS (emmanuel.soubies@irit.fr)
Mathurin Massias, Inria Lyon (mathurin.massias@inria.fr)

Location: Depending on the candidate’s interest, this internship can take place either at

• INRIA Lyon (located at ENS de Lyon),

• IRIT laboratory in Toulouse.

Moreover, work visits from one place to another will be possible.

Profile: We are looking for a highly motivated student with a background in mathematics (opti-
mization, probability an statistics, geometry) and/or electrical engineering (signal/image processing).
Strong abilities in computer sciences are required. Experience with Python is a plus. If the candidate
is successful, this internship may be pursued by a PhD.

Salary: The intern will be granted the usual stipend of ∼600 euros/month.

Keywords: Optimization, non-convexity, high dimension, sparsity, minimax concave penalty, sorted
L1 norm.

1 Context

Sparse optimization problems have become ubiquitous in high dimensional regression and classification
problems. A very common formulation is given by

min
β∈Rp

1

2
∥y −Xβ∥2 + λP (β)

where X ∈ Rm×p, y ∈ Rm, and P is a penalization term that promotes sparse solutions (i.e., with
many zeros). For instance, a popular penalization is the ℓ1-norm (P = ∥ · ∥1) (Tibshirani, 1996),
which can be seen as the best compromise between sparsity and convexity.

On the other hand, non-convex penalties such as ℓp (0 < p < 1), SCAD or MCP have been shown
to mitigate the well-known amplitude bias of their convex counterparts. Amongst these, the Mini-
max Concave Penalty (MCP) (Zhang, 2010) optimally satisfies the necessary conditions for unbiased
recovery of sparse signals (Soubies et al., 2017). It is defined by

MCP(x;λ, γ) =

{
λ|x| − x2/2γ , if |x| ≤ λγ ,

λ2γ/2 otherwise .
(1)

where λ > 0 and γ ≥ 1 are two parameters controlling the penalization strength and the non-convexity,
respectively.

1



2 Subject

The supervisors have begun investigating various open questions in this field. The intern will be able
to explore one (or both) of the following research directions, depending on his/her interests.

Improving the minimization of MCP Computing the solution of MCP regularized problems is
a challenge, due to the non convexity of the latter, that leads to existence of local minima that are
not global.

The first topic of this internship will be to improve the robustness of numerical solvers to spurious
local minimizers. To that end, the intern will build upon SparseNet (Mazumder et al., 2011) that
combines graduated non-convexity (Mobahi and Fisher, 2015) together with warm-start strategies so
as to compute the full MCP regularization path (i.e., all possibles solution from a large λ to a small
one). In particular, the goal is to exploit known properties of MCP (Soubies et al., 2020), as well as
fast solvers (Bertrand et al., 2022) to improve and accelerate the search strategy.

SLOPE MCP The Sorted L1 Penalization Estimator (SLOPE) is a convex generalization of the
Lasso (Bogdan et al., 2013). It is defined as the solution of:

min
β∈Rp

1

2
∥y −Xβ∥2 +

p∑
j=1

λj |β(j)| (2)

where λ1 ≥ · · · ≥ λp and (·) is a permutation that reorders β by decreasing magnitude: |β(1)| ≥ · · · ≥
|β(p)|. It enjoys better statistical properties than the Lasso (Bogdan et al., 2015), and automatically
clusters coefficients associated to correlated features (Figueiredo and Nowak, 2016).

Similar to (3), a Sorted MCP (S-MCP) could be defined as:

min
β∈Rd

1

2
∥y −Xβ∥2 +

d∑
j=1

MCP(|β(j)|; γ, λj) . (3)

We expect such a penalty to leverage both the advantages of SLOPE (clusturing of coefficients) and
MCP (sparse solution without bias).

The second topic of this internship will be to study the numerical feasability of solvers for S-MCP
regression problems. SLOPE’s practical success relies on the efficient computation of its proximal
operator (Zeng and Figueiredo, 2014) that allows the use of fast first order algorithms (Parikh and
Boyd, 2014). As a start, the inter will thus work on the computation of the S-MCP proximal operator
so as to efficiently deploy first order algorithms. Then, we shall also consider the use of iteratively
reweighed algorithms.
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