Papers
- 2025
- 2024
- 2023
- J. Larsson, Q. Klopfenstein, M. Massias, J. Wallin, Coordinate descent for SLOPE, AISTATS 2023.
- B. Moufad, P.-A. Bannier, Q. Bertrand, Q. Klopfenstein, M. Massias, skglm: improving scikit-learn for regularized Generalized Linear Models, submitted to JMLR OSS.
- C. Molinari, M. Massias, L. Rosasco, S. Villa, Iterative regularization for low-complexity regularizers, Numerische Mathematike.
- C. Pouliquen, P. Gonçalves, M. Massias, T. Vayer, Implicit Differentiation for Hyperparameter Tuning the Weighted Graphical Lasso, GRETSI 2023.
- 2022
- T. Moreau, M. Massias, A. Gramfort and others, Benchopt: Reproducible, efficient and collaborative optimization benchmarks, NeuRIPS 2022.
- Q. Bertrand, Q. Klopfenstein, P.-A. Bannier, G. Gidel, M. Massias, Beyond L1: Faster and better sparse models with skglm, NeuRIPS 2022.
- B. Muzellec, K. Sato, M. Massias, T. Suzuki, Dimension-free convergence rates for gradient Langevin dynamics in RKHS, COLT 2022.
- 2021
- Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter, A. Gramfort, J. Salmon,
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning, JMLR.
code
- Q. Bertrand, M. Massias, Anderson acceleration of coordinate descent, AISTATS 2021. code
- C. Molinari, M. Massias, L. Rosasco, S. Villa,
Iterative regularization for convex regularizers, AISTATS 2021. code
- 2020
- M. Massias*, Q. Bertrand*, A. Gramfort, J. Salmon,
Support recovery and sup-norm convergence rates for sparse pivotal estimation, AISTATS 2020.
- M. Massias, S. Vaiter, A. Gramfort, J. Salmon,
Dual extrapolation for sparse Generalized Linear Models, JMLR. celer library
- 2019
- P. Ablin, T. Moreau, M. Massias, A. Gramfort,
Learning step sizes for unfolded sparse coding, NeurIPS 2019.
- Q. Bertrand*, M. Massias*, A. Gramfort, J. Salmon,
Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso, NeurIPS 2019.
code
- 2018
- 2017
- M. Massias, A. Gramfort, J. Salmon,
From safe screening rules to working sets for faster Lasso-type solvers,
OPTML workshop at NIPS 2017.
- M. Massias, J. Salmon, A. Gramfort,
Gap safe screening rules for faster complex-valued multi-task group Lasso,
SPARS, Lisbon, 2017.
PhD. Thesis
- M. Massias, Sparse high dimension linear regression in the presence of heteroscedastic noise: application to magnetoelectric source imaging. Defended on 04/12/2019.
manuscript
slides